Bacterial ${\beta}$-Lactamase Fragment Complementation Strategy Can Be Used as a Method for Identifying Interacting Protein Pairs

  • Park, Jong-Hwa (Department of Advanced Technology Fusion and Bio-Molecular Informatics Center, Konkuk University) ;
  • Back, Jung-Ho (Department of Advanced Technology Fusion and Bio-Molecular Informatics Center, Konkuk University) ;
  • Hahm, Soo-Hyun (Department of Advanced Technology Fusion and Bio-Molecular Informatics Center, Konkuk University) ;
  • Shim, Hye-Young (Department of Advanced Technology Fusion and Bio-Molecular Informatics Center, Konkuk University) ;
  • Park, Min-Ju (Department of Advanced Technology Fusion and Bio-Molecular Informatics Center, Konkuk University) ;
  • Ko, Sung-Il (Department of Advanced Technology Fusion and Bio-Molecular Informatics Center, Konkuk University) ;
  • Han, Ye-Sun (Department of Advanced Technology Fusion and Bio-Molecular Informatics Center, Konkuk University)
  • Published : 2007.10.30

Abstract

We investigated the applicability of the TEM-l ${\beta}$-lactamase fragment complementation (BFC) system to develop a strategy for the screening of protein-protein interactions in bacteria. A BFC system containing a human Fas-associated death domain (hFADD) and human Fas death domain (hFasDD) was generated. The hFADD-hFasDD interaction was verified by cell survivability in ampicillin-containing medium and the colorimetric change of nitrocefin. It was also confirmed by His pull-down assay using cell lysates obtained in selection steps. A coiled-coil helix coiled-coil domain-containing protein 5 (CHCH5) was identified as an interacting protein of human uracil DNA glycosylase (hUNG) from the bacterial BFC cDNA library strategy. The interaction between hUNG and CHCH5 was further confirmed with immunoprecipitation using a mammalian expression system. CHCH5 enhanced the DNA glycosylase activity of hUNG to remove uracil from DNA duplexes containing a U/G mismatch pair. These results suggest that the bacterial BFC cDNA library strategy can be effectively used to identify interacting protein pairs.

Keywords

References

  1. Campbell, R. E. 2004. Realization of beta-lactamase as a versatile fluorogenic reporter. Trends Biotechnol. 22: 208-211 https://doi.org/10.1016/j.tibtech.2004.03.012
  2. Drewes, G. and T. Bouwmeester. 2003. Global approaches to protein-protein interactions. Curr. Opin. Cell Biol. 15: 199-205 https://doi.org/10.1016/S0955-0674(03)00005-X
  3. Fields, S. and O. Song. 1989. A novel genetic system to detect protein-protein interactions. Nature 340: 245-246 https://doi.org/10.1038/340245a0
  4. Galaneau, A., M. Primeau, L. E. Trudeau, and S. W. Michnick. 2002. Beta-lactamase protein fragment complementation assays as in vivo and in vitro sensors of protein interactions. Nat. Biotechnol. 20: 619-622 https://doi.org/10.1038/nbt0602-619
  5. Ghosh, I., A. D. Hamilton, and L. Regan. 2000. Antiparallel leucine zipper-directed protein reassembly: Application to the green fluorescent protein. J. Am. Chem. Soc. 122: 5658-5659 https://doi.org/10.1021/ja994421w
  6. Hill, J. M., G. Morisawa, T. Kim, T. Huang, Y. Wei, Y. Wei, and M. H. Werner. 2003. Identification of an expanded binding surface on the FADD death domain responsible for interaction with CD95/Fas. J. Biol. Chem. 279: 1474-1481 https://doi.org/10.1074/jbc.M304996200
  7. Ito, T., K. Tashiro, S. Muta, R. Osawa, T. Chiba, M. Nishizawa, K. Yamamoto, S. Kuhara, and Y. Sakaki. 2000. Toward a protein-protein interaction map of the budding yeast: A comprehensive system to examine two-hybrid interactions in all possible combinations between the yeast proteins. Proc. Natl. Acad. Sci. USA 97: 1143-1147
  8. Jim, Y. T., T. U. Kim, and H. S. Baik. 2006. Characterization of extended spectrum $\beta$-lactamase genotype TEM, SHV, and CTX-M producing Klebsiella pneumoniae isolated from clinical specimens in Korea. J. Microbiol. Biotechnol. 16: 889-895
  9. Jin, C., A. M. Myers, and A. Tzagoloff. 1997. Cloning and characterization of MRP10, a yeast gene coding for a mitochondrial ribosomal protein. Curr. Genet. 31: 228-234 https://doi.org/10.1007/s002940050199
  10. Kang, J. W. and Y. J. Kim. 2005. Enzymatic and energetic properties of an aerobic respiratory chain-linked NADH oxidase system in marine bacterium Vibrio natriegens. J. Microbiol. Biotechnol. 15: 1080-1086
  11. Kavil, B., O. Sundheim, M. Kbari, M. Otterlei, H. Nilsen, F. Skorpen, P. A. Aas, L. Hagen, H. E. Krokan, and G. Slupphaug. 2002. hUNG2 is the major repair enzyme for removal of uracil from U:A matches, U:G mismatches and U in single stranded DNA, with hSMUNG1 as a broad specificity backup. J. Biol. Chem. 277: 39926-39936 https://doi.org/10.1074/jbc.M207107200
  12. Krokan, H. E., F. Drablos, and G. Slupphaug. 2002. Uracil in DNA-occurrence, consequences and repair. Oncogene 21: 8935-8948 https://doi.org/10.1038/sj.onc.1205996
  13. Krokan, H. E., M. Otterlei, H. Nilsen, B. Kavli, F. Skorpen, S. Anderson, C. Skjelbred, M. Akbari, P. A. Aas, and G. Slupphaug. 2001. Properties and functions of human uracil- DNA glycosylase from the UNG gene. Prog. Nucleic Acid Res. Mol. Biol. 68: 365-386 https://doi.org/10.1016/S0079-6603(01)68112-1
  14. Michnick, S. W. 2003. Protein fragment complementation strategies for biochemical network mapping. Curr. Opin. Biotech. 14: 610-617 https://doi.org/10.1016/j.copbio.2003.10.014
  15. Moore, J. T., S. T. Davis, and I. K. Dev. 1997. The development of beta-lactamase as a highly versatile genetic reporter for eukaryotic cells. Anal. Biochem. 247: 203-209 https://doi.org/10.1006/abio.1997.2092
  16. Nilsen, H. and H. E. Krokan. 2001. Base excision repair in a network of defense and tolerance. Carcinogenesis 22: 987-998 https://doi.org/10.1093/carcin/22.7.987
  17. Nobrega, M. P., S. C. Bandeira, J. Beers, and A. Tzagoloff. 2002. Characterization of COX19, a widely distributed gene required for expression of mitochondrial cytochrome oxidase. J. Biol. Chem. 277: 40206-40211 https://doi.org/10.1074/jbc.M207348200
  18. Nord, O., A. Gustrin, and P. Nygren. 2005. Fluorescent detection of $\beta$-lactamase activity in living Escherichia coli cells via esterase supplementation. FEMS Microbiol. Lett. 242: 73-79 https://doi.org/10.1016/j.femsle.2004.10.047
  19. Otterlei, M., E. Warbrick, T. A. Nagelhus, T. Haug, G. Slupphaug, M. Akbari, P. A. Aas, K. Steinsbekk, O. Bakke, and H. E. Krokan. 1999. Post-replicative base excision repair in replication foci. EMBO J. 18: 3834-3844 https://doi.org/10.1093/emboj/18.13.3834
  20. Paulmurugan, R. and S. S. Gambhir. 2003. Monitoring protein-protein interactions using split synthetic Renilla luciferase protein-fragment-assisted complementation. Anal. Chem. 75: 1584-1589 https://doi.org/10.1021/ac020731c
  21. Pelletier, J. N., K. M. Arndt, A. Pluckthun, and S. W. Michnick. 1999. An in vivo library-versus-library selection of optimized protein-protein interactions. Nat. Biotechnol. 17: 683-690 https://doi.org/10.1038/10897
  22. Pollok, B. A. and R. Heim. 1999. Using GFP in FRET-based applications. Trends Cell Biol. 9: 57-60 https://doi.org/10.1016/S0962-8924(98)01434-2
  23. Rossi, F. M., B. T. Blakely, and H. M. Blau. 2000. Interaction blues: Protein interactions monitored in live mammalian cells by beta-galactosidase complementation. Trends Cell Biol. 10: 119-122 https://doi.org/10.1016/S0962-8924(99)01707-9
  24. Remy, I. and S. W. Mitchnick. 2001. Visualization of biochemical networks in living cells. Proc. Natl. Acad. Sci. USA 98: 7678-7683
  25. Spotts, J. M., R. E. Dolmetsch, and M. E. Greenberg. 2002. Time-lapse imaging of a dynamic phosphorylationdependent protein-protein interaction in mammalian cells. Proc. Natl. Acad. Sci. USA 99: 15142-15147
  26. Triepels, R., L. van den Heuvel, J. Loeffen, R. Smeets, F. Trijbels, and J. Smeritink. 1998. The nuclear-encoded human NADH: Ubiquinone oxidoreductase NDUFA8 subunit: cDNA cloning, chromosomal localization, tissue distribution, and mutation detection in complex-I-deficient patients. Hum. Genet. 103: 557-563 https://doi.org/10.1007/s004390050869
  27. Wehrman, T., B. Kleaveland, J. H. Her, R. F. Balint, and H. M. Blau. 2002. Protein-protein interactions monitored in mammalian cells via complementation of beta-lactamase enzyme fragments. Proc. Natl. Acad. Sci. USA 99: 3469-3474
  28. Weldhangen, G. F., B. H. Kim, C. H. Cho, and S. H. Lee. 2006. Definitive nomenclature of GES/IBC-type extendedspectrum $\beta$-lactamases. J. Microbiol. Biotechnol. 16: 1837-1840
  29. Zlokarnik, G., P. A. Negulescu, T. E. Knapp, L. Mere, N. Burres, L. Feng, M. Whitney, K. Roemer, and R. Y. Tsien. 1998. Quantization of transcription and clonal selection of single living cells with beta-lactamase as reporter. Science 279: 84-88 https://doi.org/10.1126/science.279.5347.84