New Fermentation Technique for Complete Digestion of Soybean Protein

  • Lee, Jeong-Ok (Division of Applied Life Science, Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Park, Mi-Hwa (Division of Applied Life Science, Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Choi, Yung-Hyun (Department of Biochemistry, College of Oriental Medicine, Dongeu University) ;
  • Ha, Yeong-Lae (Division of Applied Life Science, Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Ryu, Chung-Ho (Division of Applied Life Science, Institute of Agriculture and Life Science, Gyeongsang National University)
  • Published : 2007.11.30

Abstract

The aim of this study was to develop a new fermentation method in order to improve the digestion of soybean protein, and to promote normal fermentation of soybean. A proximate composition, such as moisture, pH, and reducing sugar, of fermented soybeans by the new fermentation was similar to those of controls. Neutral protease activity, the most important factor for fermented soybean products, was the highest, having about 636 Dig at 54 h fermentation. The content of total free amino acid was almost 3-18 times higher than controls. The three-step fermented soybeans can be used as a functional food ingredient for human consumption, with higher protein digestibility.

Keywords

References

  1. Aaslyng, M. D., L. M. Larsen, and P. M. Nielsen. 1999. Development of chemical and sensory characteristics during enzymatic hydrolysis of soy. Z. Lebensm. Unters. Forsch. A 208: 50-56 https://doi.org/10.1007/s002170050374
  2. AOAC, 1990. In: Helrich, E. (ed.), Official Methods of Analysis of the Association of Official Chemists, Virginia
  3. Baker, D. H. 2000. Nutritional constraints to use of soy products by animals, pp. 1-12. In J. K. Drackley (ed.), Soy in Animal Nutrition. Federation of Animal Science Societies, Savoy, IL
  4. Bernard, F. G., Z. Alexandre, M. Robert, and M. Cartherine. 2004. Production and characterization of bioactive peptides from soy hydrolysate and soy-fermented food. Food Res. Int. 37: 123-131 https://doi.org/10.1016/j.foodres.2003.09.010
  5. Cheigh, C. I., S. J. Lee, Y. R. Pyun, D. J. An, Y. S. Hwang, Y. J. Chung, and H. Park. 2005. The effect of carbon sources on nisin Z biosynthesis in Lactococcus lactis subsp. lactis A 164. J. Microbiol. Biotechnol. 15: 1152-1157
  6. Choi, N. S., D. M. Chung, C. H. Ryu, K. S. Yoon, P. J. Maeng, and S. H. Kim. 2006. Identification of three extracellular proteases from Bacillus subtilis KCTC 3014. J. Microbiol. Biotechnol. 16: 457-464
  7. Clarke, E. and J. Wiseman. 1999. Extrusion temperature impairs trypsin inhibitor activity in soybean meal. Feed Technol. 3: 29-31
  8. Dakwa, S., E. Sakyi-Dawson, D. Diako, N. T. Annan, and W. K. Amoa-Awua. 2005. Effect of boiling and roasting on the fermentation of soybeans into dawadawa (soy-dawadawa). Int. J. Food Microbiol. 104: 69-82 https://doi.org/10.1016/j.ijfoodmicro.2005.02.006
  9. Fujimaki, M., M. Yamashita, Y. Okazawa, and S. Arai. 1970. Applying proteolytic enzymes on soybean: 3 diffusible bitter peptides and free amino acids in peptic hydrolysation of soybean protein. J. Food Sci. 35: 215-218 https://doi.org/10.1111/j.1365-2621.1970.tb12141.x
  10. Gilbert, R. 1998. Expanding soybeans minimizes antinutritional factors. Feed Technol. 2: 19-21
  11. Harayama, F., S. Hondo, and H. Yasuhira. 1992. Analysis of the various enzymes which related to a Miso quality. Nippon Jozo Kyokaishi (in Japanese) 87: 829-837
  12. Hong, K. J., C. H. Lee, and S. W. Kim. 2004. Aspergillus oryzae GB-107 fermentation improves nutritional quality of food soybeans and feed soybean meals. J. Med. Food 7: 430-435 https://doi.org/10.1089/jmf.2004.7.430
  13. Ji, W. D., E. J. Lee, and J. K. Kim. 1992. Volatile flavor components of soybean pastes manufactured with traditional Meju and improved Meju. J. Kor. Agric. Chem. Soc. 35: 248-253
  14. Kaankuka, F. G., T. F. Balogun, and T. S. B. Tegbe. 1996. Effects of duration of cooking of full-fat soya beans on proximate analysis, levels of antinutritional factors, and digestibility by weanling pigs. Anim. Feed Sci. Technol. 62: 229-237 https://doi.org/10.1016/S0377-8401(96)00952-2
  15. Kim, B. N., J. L. Yang, and Y. S. Song. 1999. Physiological functions of chongkukjang. Food Ind. Nutr. 4: 40-46
  16. Kim, I. J., J. O. Lee, M. H. Park, D. H. Shon, Y. L. Ha, and C. H. Ryu. 2002. Preparation method of Meju by three step fermentation. Korean J. Food Sci. Technol. 34: 536-539
  17. Kim, S. W. and D. H. Baker. 2003. Use of enzyme supplements in pig diets based on soya bean meal. Pig News Inform. 24: 91N-96N
  18. Lee, H. J. 1998. Health functional peptides from soybean foods. Korea Soybean Digest 15: 16-22
  19. Lee, J. O. 2003. Properties and preparation of whole-shape soybean meju by three step fermentation method, pp. 25-26. Master Thesis, Gyeongsang National University, Jinju, Korea
  20. Liener, I. E. 2000. Non-nutritive factors and bioactive compounds in soy, pp. 13-45. In J. K. Drackley (ed.), Soy in Animal Nutrition. Federation of Animal Science Societies, Savoy, IL
  21. Messina, M. J., V. Persky, D. R. Setchell, and S. Barnes. 1994. Soy intake and cancer risk: A review of the in vitro and in vivo data. Nutr. Cancer 21: 113-131 https://doi.org/10.1080/01635589409514310
  22. Park, S. K. and D. H. Bae. 2006. Film-forming properties of proteinaceous fibrous material produced from soybean fermented by Bacillus natto. J. Microbiol. Biotechnol. 16: 1053-1059
  23. Song, H. H., M. J. Gil, and C. Lee. 2005. Mass-spectral identification of an extracellular protease from Bacillus subtilis KCCM 10257, a producer of antibacterial peptide Subtilein. J. Microbiol. Biotechnol. 15: 1054-1059
  24. Summer, J. B. and S. F. Howell. 1935. A method for determination of saccharase activity. J. Biol. Chem. 108: 51-54
  25. Terlabie, N. N., E. Sakyi-Dawson, and W. K. Amoa-Awua. 2006. The comparative ability of four isolates of Bacillus subtilis to ferment soybeans into dawadawa. Int. J. Food Microbiol. 106: 145-152 https://doi.org/10.1016/j.ijfoodmicro.2005.05.021
  26. Yi, S. D., J. S. Yang, G. H. Lee, S. H. Choi, and M. J. Oh. 2001. Effects of raw materials and various molds on the production of koji. J. Food Sci. Nutr. 6: 101-106
  27. Yoshii, H. 1982. Soybean miso, pp. 182-208. In M. Nakano (ed.), Fermentation Technology of Miso. Brewing Society of Japan, Tokyo
  28. Zamora, R. G. and T. L. Veum. 1979. Whole soybeans fermented with Aspergillus oryzae and Rhizopus oligosporus for growing pigs. J. Anim. Sci. 48: 63-68 https://doi.org/10.2527/jas1979.48163x