Individual LPS Responsiveness Depends on the Variation of Toll-like Receptor (TLR) Expression Level

  • JaeKal, Jun (Laboratory of Cytokine Immunology, Institute of Biomedical Science and Technology, Konkuk University) ;
  • Abraham, Edward (Department of Medicine, University of Alabama at Birmingham) ;
  • Azam, Tania (Division of Infectious Diseases, University of Colorado Health Sciences Center) ;
  • Netea, Mihai G. (Division of Infectious Diseases, University of Colorado Health Sciences Center) ;
  • Dinarello, Charles A. (Division of Infectious Diseases, University of Colorado Health Sciences Center) ;
  • Lim, Jong-Seok (Department of Biological Science, Sookmyung Women's University) ;
  • Yang, Young (Department of Biological Science, Sookmyung Women's University) ;
  • Yoon, Do-Young (Department of Bioscience and Biotechnology, Konkuk University) ;
  • Kim, Soo-Hyun (Laboratory of Cytokine Immunology, Institute of Biomedical Science and Technology, Konkuk University)
  • Published : 2007.11.30

Abstract

An individual's immune response is critical for host protection from many different pathogens, and the responsiveness can be assessed by the amount of cytokine production upon stimulating bacterial components such as lipopolysaccharide (LPS). The difference between individuals in their peripheral blood mononuclear cells (PBMC) responsiveness to LPS, a Gram-negative endotoxin, was investigated from 27 healthy individuals. We observed a large variation in $IFN{\gamma}$ production among different individuals. The PBMC of the consistently three highest and three lowest $IFN{\gamma}$ producers were investigated. Since previous studies described that a single point mutation in the coding region of TLR2 and TLR4 is linked to the individual responsiveness to pathogenic bacterial infections, we first examined the known point mutations in the coding region of $TLR2^{Pro681His}$, $TLR4^{Pro714His}$ located in the cytoplasmic regions of the Toll-like domain as well as $TLR4^{Asp299Gly}$ located in the extracellular region. None of these mutations were associated with an individual's responsiveness to LPS, despite the presence of $TLR4^{Asp299Gly}$ mutation. Further investigation revealed that the variation of PBMC responsiveness to LPS among healthy individuals was due to constitutive expression levels of TLR4 and TLR2. This result is consistent with an aging-related low expression of Toll-like receptors in the mouse model of LPS responsiveness. The present study therefore suggests that the constitutive expression levels of TLR2 and TLR4 may contribute to the individual response to LPS.

Keywords

References

  1. Akira, S., K. Takeda, and T. Kaisho. 2001. Toll-like receptors: Critical proteins linking innate and acquired immunity. Nat. Immunol. 2: 675-680 https://doi.org/10.1038/90609
  2. Alexopoulou, L., A. C. Holt, R. Medzhitov, and R. A. Flavell. 2001. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413: 732-738 https://doi.org/10.1038/35099560
  3. Arbour, N. C., E. Lorenz, B. C. Schutte, J. Zabner, J. N. Kline, M. Jones, K. Frees, J. L. Watt, and D. A. Schwartz. 2000. TLR4 mutations are associated with endotoxin hyporesponsiveness in humans. Nat. Genet. 25: 187-191 https://doi.org/10.1038/76048
  4. Fitzgerald K. A., E. M. Palsson-McDermott, A. G. Bowie, C. A. Jefferies, A. S. Mansell, G. Brady, E. Brint, A. Dunne, P. Gray, M. T. Harte, D. McMurray, D. E. Smith, J. E. Sims, T. A. Bird, and L. A. O'Neill. 2001. Mal (MyD88-adapterlike) is required for Toll-like receptor-4 signal transduction. Nature 413: 78-83 https://doi.org/10.1038/35092578
  5. Ginaldi, L., M. F. Loreto, M. P. Corsi, M. Modesti, and M. De Martinis. 2001. Immunosenescence and infectious diseases. Microbes Infect. 3: 851-857 https://doi.org/10.1016/S1286-4579(01)01443-5
  6. Haehnel, V., L. Schwarzfischer, M. J. Fenton, and M. Rehli. 2002. Transcriptional regulation of the human toll-like receptor 2 gene in monocytes and macrophages. J. Immunol. 168: 5629-5637 https://doi.org/10.4049/jimmunol.168.11.5629
  7. Heine, H., C. J. Kirschning, E. Lien, B. G. Monks, M. Rothe, and D. T. Golenbock. 1999. Cutting edge: Cells that carry A null allele for toll-like receptor 2 are capable of responding to endotoxin. J. Immunol. 162: 6971-6975
  8. Hemmi, H., T. Kaisho, O. Takeuchi, S. Sato, H. Sanjo, K. Hoshino, T. Horiuchi, H. Tomizawa, K. Takeda, and S. Akira. 2002. Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat. Immunol. 3: 196-200 https://doi.org/10.1038/ni758
  9. Hirschfeld, M., Y. Ma, J. H. Weis, S. N. Vogel, and J. J. Weis. 2000. Cutting edge: Repurification of lipopolysaccharide eliminates signaling through both human and murine tolllike receptor 2. J. Immunol. 165: 618-622 https://doi.org/10.4049/jimmunol.165.2.618
  10. Horng, T., G. M. Barton, R. A. Flavell, and R. Medzhitov. 2002. The adaptor molecule TIRAP provides signalling specificity for Toll-like receptors. Nature 420: 329-333 https://doi.org/10.1038/nature01180
  11. Ishida, I., H. Kubo, S. Suzuki, T. Suzuki, S. Akashi, K. Inoue, S. Maeda, H. Kikuchi, H. Sasaki, and T. Kondo. 2002. Hypoxia diminishes toll-like receptor 4 expression through reactive oxygen species generated by mitochondria in endothelial cells. J. Immunol. 169: 2069-2075 https://doi.org/10.4049/jimmunol.169.4.2069
  12. Jurk, M., F. Heil, J. Vollmer, C. Schetter, A. M. Krieg, H. Wagner, G. Lipford, and S. Bauer. 2002. Human TLR7 or TLR8 independently confer responsiveness to the antiviral compound R-848. Nat. Immunol. 3: 499
  13. Kawai, T., O. Adachi, T. Ogawa, K. Takeda, and S. Akira. 1999. Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity 11: 115-122 https://doi.org/10.1016/S1074-7613(00)80086-2
  14. Kim, H. Y., J.-R. Kim, and H.-S. Kim. 2006. Synergistic effect of interleukin-18 on the expression of lipopolysaccharideinduced IP-10 (CXCL-10) mRNA in mouse peritoneal macrophages. J. Microbiol. Biotechnol. 16: 1605-1612
  15. Kim, H. Y., J. O. Yang, and G. E. Ji. 2005. Effect of bifidobacteria on production of allergy-related cytokines from mouse spleen cells. J. Microbiol. Biotechnol. 15: 265-268
  16. Kim, S. H., T. Azam, D. Y. Yoon, L. L. Reznikov, D. Novick, M. Rubinstein, and C. A. Dinarello. 2001. Sitespecific mutations in the mature form of human IL-18 with enhanced biological activity and decreased neutralization by IL-18 binding protein. Proc. Natl. Acad. Sci. USA 98: 3304-3309
  17. Lee, B. H. and G. E. Ji. 2005. Effect of bifidobacterium cell fractions on IL-6 production in RAW 264.7 macrophage cells. J. Microbiol. Biotechnol. 15: 740-744
  18. Lee, D. H., B.-J. Park, M.-S. Lee, J.-B. Choi, J.-K. Kim, J.-H. Park, and J.-C. Park. 2006. Synergistic effect of Staphylococcus aureus and LPS on silica-induced tumor necrosis factor production in macrophage cell line J774A.1. J. Microbiol. Biotechnol. 16: 136-140
  19. Lee, J., L. Mira-Arbibe, and R. J. Ulevitch. 2000. TAK1 regulates multiple protein kinase cascades activated by bacterial lipopolysaccharide. J. Leukoc. Biol. 68: 909-915
  20. Lomaga, M. A., W. C. Yeh, I. Sarosi, G. S. Duncan, C. Furlonger, A. Ho, S. Morony, C. Capparelli, G. Van, S. Kaufman, A. van der Heiden, A. Itie, A. Wakeham, W. Khoo, T. Sasaki, Z. Cao, J. M. Penninger, C. J. Paige, D. L. Lacey, C. R. Dunstan, W. J. Boyle, D. V. Goeddel, and T. W. Mak. 1999. TRAF6 deficiency results in osteopetrosis and defective interleukin- 1, CD40, and LPS signaling. Genes Dev. 13: 1015-1024 https://doi.org/10.1101/gad.13.8.1015
  21. Medzhitov, R., P. Preston-Hurlburt, and C. A. Janeway, Jr. 1997. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388: 394-397 https://doi.org/10.1038/41131
  22. Miller, R. A. 1996. The aging immune system: Primer and prospectus. Science 273: 70-74 https://doi.org/10.1126/science.273.5271.70
  23. Musikacharoen, T., T. Matsuguchi, T. Kikuchi, and Y. Yoshikai. 2001. NF-kappa B and STAT5 play important roles in the regulation of mouse Toll-like receptor 2 gene expression. J. Immunol. 166: 4516-4524 https://doi.org/10.4049/jimmunol.166.7.4516
  24. Poltorak, A., X. He, I. Smirnova, M. Y. Liu, C. Van Huffel, X. Du, D. Birdwell, E. Alejos, M. Silva, C. Galanos, M. Freudenberg, P. Ricciardi-Castagnoli, B. Layton, and B. Beutler. 1998. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: Mutations in Tlr4 gene. Science 282: 2085-2088 https://doi.org/10.1126/science.282.5396.2085
  25. Rehli, M., A. Poltorak, L. Schwarzfischer, S. W. Krause, R. Andreesen, and B. Beutler. 2000. PU.1 and interferon consensus sequence-binding protein regulate the myeloid expression of the human Toll-like receptor 4 gene. J. Biol. Chem. 275: 9773-9781 https://doi.org/10.1074/jbc.275.13.9773
  26. Renshaw, M., J. Rockwell, C. Engleman, A. Gewirtz, J. Katz, and S. Sambhara. 2002. Cutting edge: Impaired Toll-like receptor expression and function in aging. J. Immunol. 169: 4697-4701 https://doi.org/10.4049/jimmunol.169.9.4697
  27. Schumann, R. R., S. R. Leong, G. W. Flaggs, P. W. Gray, S. D. Wright, J. C. Mathison, P. S. Tobias, and R. J. Ulevitch. 1990. Structure and function of lipopolysaccharide binding protein. Science 249: 1429-1431 https://doi.org/10.1126/science.2402637
  28. Son, C. H., H. R. Yoon, I. O. Seong, M.-R. Chang, Y. C. Kim, H.-C. Kang, S.-C. Suh, and Y. S. Kim. 2006. MethA fibrosarcoma cells expressing membrane-bound forms of IL- 2 enhance antitumor immunity. J. Microbiol. Biotechnol. 16: 1919-1927
  29. Takeuchi, O., K. Hoshino, T. Kawai, H. Sanjo, H. Takada, T. Ogawa, K. Takeda, and S. Akira. 1999. Differential roles of TLR2 and TLR4 in recognition of Gram-negative and Grampositive bacterial cell wall components. Immunity 11: 443-451 https://doi.org/10.1016/S1074-7613(00)80119-3
  30. Ulevitch, R. J. and P. S. Tobias. 1999. Recognition of Gramnegative bacteria and endotoxin by the innate immune system. Curr. Opin. Immunol. 11: 19-22 https://doi.org/10.1016/S0952-7915(99)80004-1
  31. Underhill, D. M., A. Ozinsky, A. M. Hajjar, A. Stevens, C. B. Wilson, M. Bassetti, and A. Aderem. 1999. The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature 401: 811-815 https://doi.org/10.1038/44605
  32. van der Graaf, C., B. J. Kullberg, L. Joosten, T. Verver- Jansen, L. Jacobs, J. W. Van der Meer, and M. G. Netea. 2005. Functional consequences of the Asp299Gly Toll-like receptor-4 polymorphism. Cytokine 30: 264-268 https://doi.org/10.1016/j.cyto.2005.02.001
  33. van Duin, D., S. Mohanty, V. Thomas, S. Ginter, R. R. Montgomery, E. Fikrig, H. G. Allore, R. Medzhitov, and A. C. Shaw. 2007. Age-associated defect in human TLR-1/2 function. J. Immunol. 178: 970-975 https://doi.org/10.4049/jimmunol.178.2.970
  34. Wang, T., W. P. Lafuse, and B. S. Zwilling. 2001. NFkappaB and Sp1 elements are necessary for maximal transcription of toll-like receptor 2 induced by Mycobacterium avium. J. Immunol. 167: 6924-6932 https://doi.org/10.4049/jimmunol.167.12.6924
  35. Wright, S. D., R. A. Ramos, P. S. Tobias, R. J. Ulevitch, and J. C. Mathison. 1990. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 249: 1431-1433 https://doi.org/10.1126/science.1698311
  36. Xu, Y., X. Tao, B. Shen, T. Horng, R. Medzhitov, J. L. Manley, and L. Tong. 2000. Structural basis for signal transduction by the Toll/interleukin-1 receptor domains. Nature 408: 111-115 https://doi.org/10.1038/35040600
  37. Yang, R. B., M. R. Mark, A. Gray, A. Huang, M. H. Xie, M. Zhang, A. Goddard, W. I. Wood, A. L. Gurney, and P. J. Godowski. 1998. Toll-like receptor-2 mediates lipopolysaccharide-induced cellular signalling. Nature 395: 284-288 https://doi.org/10.1038/26239
  38. Zhang, F. X., C. J. Kirschning, R. Mancinelli, X. P. Xu, Y. Jin, E. Faure, A. Mantovani, M. Rothe, M. Muzio, and M. Arditi. 1999. Bacterial lipopolysaccharide activates nuclear factor-kappaB through interleukin-1 signaling mediators in cultured human dermal endothelial cells and mononuclear phagocytes. J. Biol. Chem. 274: 7611-7614 https://doi.org/10.1074/jbc.274.12.7611