Photolithographic Fabrication of Poly(Ethylene Glycol) Microstructures for Hydrogel-based Microreactors and Spatially Addressed Microarrays

  • Baek, Taek-Jin (Department of Applied Chemistry, Hanyang University) ;
  • Kim, Nam-Hyun (Department of Applied Chemistry, Hanyang University) ;
  • Choo, Jae-Bum (Department of Applied Chemistry, Hanyang University) ;
  • Lee, Eun-Kyu (Department of Chemical Engineering, Hanyang University) ;
  • Seong, Gi-Hun (Department of Applied Chemistry, Hanyang University)
  • Published : 2007.11.30

Abstract

We describe the fabrication of poly(ethylene glycol) diacrylate (PEG-DA) hydrogel microstructures with a high aspect ratio and the use of hydrogel microstructures containing the enzyme ${\beta}$-galactosidase (${\beta}$-Gal) or glucose oxidase (GOx)/horseradish peroxidase (HRP) as biosensing components for the simultaneous detection of multiple analytes. The diameters of the hydrogel microstructures were almost the same at the top and at the bottom, indicating that no differential curing occurred through the thickness of the hydrogel microstructure. Using the hydrogel microstructures as microreactors, ${\beta}$-Gal or GOx/HRP was trapped in the hydrogel array, and the time-dependent fluorescence intensities of the hydrogel array were investigated to determine the dynamic uptake of substrates into the PEG-DA hydrogel. The time required to reach steady-state fluorescence by glucose diffusing into the hydrogel and its enzymatic reactions with GOx and HRP was half the time required for resorufin ${\beta}$-D-galactopyranoside (RGB) when used as the substrate for ${\beta}$-Gal. Spatially addressed hydrogel microarrays containing different enzymes were micropatterned for the simultaneous detection of multiple analytes, and glucose and RGB solutions were incubated as substrates. These results indicate that there was no cross-talk between the ${\beta}$-Gal-immobilizing hydrogel micropatches and the GOx/HRP-immobilizing micropatches.

Keywords

References

  1. Becker, H. and U. Heim. 2000. Hot embossing as a method for the fabrication of polymer high aspect ratio structures. Sens. Actuators A Phys. 83: 130-135 https://doi.org/10.1016/S0924-4247(00)00296-X
  2. Bernard, A., B. Michel, and E. Delamarche. 2001. Micromosaic immunoassays. Anal. Chem. 73: 8-12 https://doi.org/10.1021/ac0008845
  3. Bruckbauer, A., D. Zhou, D.-J. Kang, Y. E. Korchev, C. Abell, and D. Klenerman. 2004. An addressable antibody nanoarray produced on a nanostructured surface. J. Am. Chem. Soc. 126: 6508-6509 https://doi.org/10.1021/ja0317426
  4. Chan-Park, M. B., Y. Yan, W. K. Neo, W. Zhou, J. Zhang, and C. Y. Yue. 2003. Fabrication of high aspect ratio poly(ethylene glycol)-containing microstructures by UV embossing. Langmuir 19: 4371-4380 https://doi.org/10.1021/la026967t
  5. Choi, J.-W., Y.-K. Kim, H.-J. Kim, W. Lee, and G. H. Seong. 2006. Lab-on-a-chip for monitoring the quality of raw milk. J. Microbiol. Biotechnol. 16: 1229-1235
  6. Demers, L. M., D. S. Ginger, S.-J. Park, Z. Li, S.-W. Chung, and C. A. Mirkin. 2002. Direct patterning of modified oligonucleotides on metals and insulators by dip-pen nanolithography. Science 296: 1836-1838 https://doi.org/10.1126/science.1071480
  7. Falconnet, D., G. Csucs, H. M. Grandin, and M. Textor. 2006. Surface engineering approaches to micropattern surfaces for cell-based assays. Biomaterials 27: 3044-3063 https://doi.org/10.1016/j.biomaterials.2005.12.024
  8. Han, J. H., J. M. Krochta, Y.-L. Hsieh, and M. J. Kurth. 2000. Mechanism and characteristics of protein release from lactitol-based cross-linked hydrogel. J. Agric. Food Chem. 48: 5658-5665 https://doi.org/10.1021/jf0002239
  9. Heo, J. and R. M. Crooks. 2005. Microfluidic biosensor based on an array of hydrogel-entrapped enzymes. Anal. Chem. 77: 6843-6851 https://doi.org/10.1021/ac0507993
  10. Jeong, W. J., J. Y. Kim, J. Choo, E. K. Lee, C. S. Han, D. J. Beebe, G. H. Seong, and S. H. Lee. 2005. Continuous fabrication of biocatalyst immobilized microparticles using photopolymerization and immiscible liquids in microfluidic systems. Langmuir 21: 3738-3741 https://doi.org/10.1021/la050105l
  11. Kannan, B., K. Castelino, F. F. Chen, and A. Majumdar. 2006. Lithographic techniques and surface chemistries for the fabrication of PEG-passivated protein microarrays. Biosens. Bioelectron. 21: 1960-1967 https://doi.org/10.1016/j.bios.2005.09.018
  12. Kim, B. and N. A. Peppas. 2003. Poly(ethylene glycol)- containing hydrogel microparticles for oral protein delivery applications. Biomed. Microdevices 5: 333-341 https://doi.org/10.1023/A:1027313931273
  13. Kim, H.-S., Y.-M. Bae, Y.-K. Kim, B.-K. Oh, and J.-W. Choi. 2006. Antibody layer fabrication for protein chip to detect E. coli O157:H7, using microcontact printing technique. J. Microbiol. Biotechnol. 16: 141-144
  14. Koh, W.-G., A. Revzin, A. Simonian, T. Reeves, and M. Pishko. 2003. Control of mammalian cell and bacteria adhesion on substrates micropatterned with poly(ethylene glycol) hydrogels. Biomed. Microdevices 5: 11-19 https://doi.org/10.1023/A:1024455114745
  15. Lee, W., S.-S. Lim, B.-K. Choi, and J.-W. Choi. 2006. Protein array fabricated by microcontact printing for miniaturized immunoassay. J. Microbiol. Biotechnol. 16: 1216-1221
  16. Revzin, A., P. Rajagopalan, A. W. Tilles, F. Berthiaume, M. L. Yarmush, and M. Toner. 2004. Designing a hepatocellular microenvironment with protein microarraying and poly(ethylene glycol) photolithography. Langmuir 20: 2999-3005 https://doi.org/10.1021/la035827w
  17. Revzin, A., R. J. Russell, V. K. Yadavalli, W.-G. Koh, C. Deister, D. D. Hile, M. B. Mellott, and M. Pishko. 2001. Fabrication of poly(ethylene glycol) hydrogel microstructures using photolithography. Langmuir 17: 5440-5447 https://doi.org/10.1021/la010075w
  18. Sawhney, A. S., C. P. Pathak, and J. A. Hubbell. 1993. Bioerodible hydrogels based on photopolymerized poly(ethylene glycol)-co-poly($\alpha$-hydroxy acid) diacrylate macromers. Macromolecules 26: 581-587 https://doi.org/10.1021/ma00056a005
  19. Scott, R. A. and N. A. Peppas. 1999. Highly crosslinked, PEG-containing copolymers for sustained solute delivery. Biomaterials 20: 1371-1380 https://doi.org/10.1016/S0142-9612(99)00040-X
  20. Seong, G. H. and R. M. Crooks. 2002. Efficient mixing and reactions within microfluidic channels using microbeadsupported catalysts. J. Am. Chem. Soc. 124: 13360-13361 https://doi.org/10.1021/ja020932y
  21. Seong, G. H., W. Zhan, and R. M. Crooks. 2002. Fabrication of microchambers within microfluidic systems using photopolymerized hydrogels: Applicaion to DNA hybridization. Anal. Chem. 74: 3372-3377 https://doi.org/10.1021/ac020069k
  22. Whitesides, G. M., E. Ostuni, S. Takayama, X. Jiang, and D. E. Ingber. 2001. Soft lithography in biology and biochemistry. Annu. Rev. Biomed. Eng. 3: 335-373 https://doi.org/10.1146/annurev.bioeng.3.1.335
  23. Willner, I. and E. Katz. 2000. Integration of layered redox proteins and conductive supports for bioelectronic application. Angew Chem. Int. Engl. 39: 1180-1218 https://doi.org/10.1002/(SICI)1521-3773(20000403)39:7<1180::AID-ANIE1180>3.0.CO;2-E
  24. Yap, F. L. and Y. Zhang. 2007. Protein and cell micropatterning and its integration with micro/nanoparticles assembly. Biosens. Bioelectron. 22: 775-788 https://doi.org/10.1016/j.bios.2006.03.016
  25. Zguris, J. C., L. J. Itle, D. Hayes, and M. Pishko. 2005. Microreactor microfluidic systems with human microsomes and hepatocytes for use in metabolic studies. Biomed. Microdevices 7: 117-125 https://doi.org/10.1007/s10544-005-1589-9
  26. Zhan, W., G. H. Seong, and R. M. Crooks. 2002. Hydrogelbased microreactors as a functional component of microfluidic systems. Anal. Chem. 74: 4647-4652 https://doi.org/10.1021/ac020340y