Characterization of Xylanase from Lentinus edodes M290 Cultured on Waste Mushroom Logs

  • Lee, Jae-Won (Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University) ;
  • Gwak, Ki-Seob (Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University) ;
  • Kim, Su-Il (Department of Agricultural Biotechnology, Seoul National University) ;
  • Kim, Mi-Hyang (Department of Agricultural Biotechnology, Seoul National University) ;
  • Choi, Don-Ha (Department of Wood Chemistry and Microbiology, Korea Forest Research Institute) ;
  • Choi, In-Gyu (Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University)
  • Published : 2007.11.30

Abstract

Extracellular enzymes from Lentinus edodes M290 on normal woods (Quercus mongolica) and waste logs from oak mushroom production were comparatively investigated. Endoglucanase, cellobiohydrolase, ${\beta}$-glucosidase, and xylanase activities were higher on waste mushroom logs than on normal woods after 1. edodes M290 inoculation. Xylanase activity was especially different, with a three times higher activity on waste mushroom logs. When the waste mushroom logs were used as a carbon source, a new 35 kDa protein appeared. After the purification, the optimal pH and temperature for xylanase activity were determined to be 4.0 and $50^{\circ}C$, respectively. More than 50% of the optimal xylanase activity was retained when the temperature was increased from 20 to $60^{\circ}C$, after a 240 min reaction. At $40^{\circ}C$, the xylanase maintained 93% of the optimal activity, after a 240 min reaction. The purified xylanase showed a very high homology to the xylanase family 10 from Aspergillus terreus by LC/MS-MS analysis. The highest Xcorr (1.737) was obtained from the peptide KWI SQGIPIDGIG SQTHLGSGGS WTVK originated from Aspergillus terreus, indicating that the 35 kDa protein was xylanase. This protein showed low homology to a previously reported L. edodes xylanase sequence.

Keywords

References

  1. Abbas, A., H. Koc, F. Liu, and M. Tien. 2005. Fungal degradation of wood: Initial proteomic analysis of extracellular proteins of Phanerochaete chrysosporium grown on oak substrate. Curr. Genet. 47: 49-56 https://doi.org/10.1007/s00294-004-0550-4
  2. Beg, Q. K., M. Kapoor, L. Mahajan, and G. S. Hoondai. 2001. Microbial xylanases and their industrial applications: A review. Appl. Microbiol. Biotechnol. 56: 326-338 https://doi.org/10.1007/s002530100704
  3. Berlin, A., N. Gilkes, D. Kilburn, V. Mazimenko, R. Bura, A. Markov, A. Skomarovsky, A. Gusakov, A. Sinitsyn, O. Okunev, I. Solovieva, and J. N. Saddler. 2006. Evaluation of cellulase preparations for hydrolysis of hardwood substrate. Appl. Biochem. Biotechnol. 129-132: 528-545
  4. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  5. Buswell, J. A., Y. Cai, and S. Chang. 1995. Effect of nutrient nitrogen and manganese on manganese peroxidase and laccase production by Lentinula (Lentinus) edodes. FEMS Lett. 128: 81-88 https://doi.org/10.1111/j.1574-6968.1995.tb07504.x
  6. Chakrit, T., Y. S. Lee, K. Rantanakhanokchai, S. Pinitglang, K. L. Kyu, M. S. Rho, and S. K. Lee. 2006. Purification and characterization of two endoxylanases from an alkaliphilic Bacillus halodurans C-1. J. Microbiol. Biotechnol. 16: 613-618
  7. Chandrakant, P. and V. S. Bisaria. 1998. Simultaneous bioconversion of cellulose and hemicellulose to ethanol. Crit. Rev. Biotechnol. 18: 295-331 https://doi.org/10.1080/0738-859891224185
  8. Choi, J. H., O. S. Lee, J. H. Shin, Y. Y. Kwak, Y. M. Kim, and I. K. Rhee. 2006. Thermostable xylanase encoded by xynA of Streptomyces thermocyaneoviolaceus: Cloning, purification, characterization and production of xylooligosaccharides. J. Microbiol. Biotechnol. 16: 57-63
  9. Christopher H. V., C. D. Trevor, and E. S. Colin. 2003. Biodegradation of Oak (Quercus alba) wood during growth of the Shiitake mushroom (Lentinula edodes): A molecular approach. J. Agric. Food Chem. 51: 947-956 https://doi.org/10.1021/jf020932h
  10. Hamada, N., K. Ishikawa, N. Fuse, R. Kodaira, M. Shimosaka, Y. Amano, T. Kanda, and M. Okazaki. 1999. Purification, characterization and gene analysis of exocellulase II (Ex-II) from the white rot basidiomycete Irpex lacteus. J. Biosci. Bioeng. 87: 442-451 https://doi.org/10.1016/S1389-1723(99)80092-9
  11. Hong, S. W., K. S. Shin, Y. Yoon, and W. K. Lee. 1986. Extracellular wood-degradative enzymes from Lentinus edodes JA01. Kor. J. Mycol. 14: 189-194
  12. Igarashi, K., M. Samejima, Y. Savuri, N. Habu, and K. E. L. Eriksson. 1997. Localization of cellobiose dehydrogenase in cellulose grown cultures of Phanerochaete chrysosporium. Fungal Genet. Biol. 21: 214-222 https://doi.org/10.1006/fgbi.1996.0954
  13. Koo, B. W., J. Y. Park, S. M. Lee, D. H. Choi, and I. G. Choi. 2005. Analysis of chemical and physical characteristics of log woods for oak mushroom production depending on cultivation periods and steam explosion treatment. Mokchae Konghak 33: 77-86
  14. Kremer, S. M. and P. M. Wood. 1992. Evidence that cellobiose oxidase from Phanerochaete chrysosporium is primarily an Fe(III) reductase. Eur. J. Biochem. 205: 133-138 https://doi.org/10.1111/j.1432-1033.1992.tb16760.x
  15. Krisana, A., S. Rutchadaporn, G. Jarupan, E. Lily, T. Sutipa, and K. Kanyawim. 2005. Endo-1,4-$\beta$-xylanase from Aspergillus cf. niger BCC14405 isolated in Thailand: Purification, characterization and gene isolation. J. Biochem. Mol. Biol. 38: 17-23 https://doi.org/10.5483/BMBRep.2005.38.1.017
  16. Kusuma, K., G. H. Chon, J. S. Lee, J. Kongkiattikajorn, K. Ratanakhanokchai, K. L. Kyu, J. H. Lee, M. S. Roh, Y. Y. Choi, H. Park, and Y. S. Lee. 2006. Hydrolysis of agricultural residues and kraft pulps by xylanolytic enzymes from alkaliphilic Bacillus sp. strain BK. J. Microbiol. Biotechnol. 16: 1255-1261
  17. Laemli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685 https://doi.org/10.1038/227680a0
  18. Lee, C. C., D. W. S. Wong, and G. H. Robertson. 2001. Cloning and characterization of two cellulase genes from Lentinula edodes. FEMS Lett. 205: 355-360 https://doi.org/10.1111/j.1574-6968.2001.tb10972.x
  19. Lee, C. C., D. W. S. Wong, and G. H. Robertson. 2005. Cloning and characterization of the Xyn11A gene from Lentinula edodes. Protein J. 24: 21-26 https://doi.org/10.1007/s10930-004-0602-0
  20. Lee, Y. S., K. Ratanakhanokchai, W. Piyatheerawong, K. L. Kyu, M. S. Rho, Y. S. Kim, A. Om, J. W. Lee, O. H. Jhee, G. H. Chon, H. Park, and J. Kang. 2006. Production and location of xylanolytic enzymes in alkaliphilic Bacillus sp. K-1. J. Microbiol. Biotechnol. 16: 921-926
  21. Makkar, R. S., A. Tsuneda, K. Tokuyasu, and Y. Mori. 2001. Lentinula edodes produces a multicomponent protein complex containing manganese (II)-dependent peroxidase, laccase and ${\beta}$-glucosidase. FEMS Lett. 200: 175-179
  22. Mata, G. and J. M. Savoie. 1998. Extracellular enzyme activities in six Lentinula edodes strains during cultivation in wheat straw. World J. Microbiol. Biotechnol. 14: 513-519 https://doi.org/10.1023/A:1008886521091
  23. Polizeli, M. L. T. M., A. C. S. Rizzatti, and R. Monti. 2005. Xylanases from fungi: Properties and industrial application. Appl. Microbiol. Biotechnol. 67: 577-591 https://doi.org/10.1007/s00253-005-1904-7
  24. Sakamoto, Y., T. Irie, and T. Sato. 2005. Isolation and characterization of a fruiting body-specific exo-$\beta$-1,3- glucanase-encoding gene, exg1, from Lentinula edodes. Curr. Genet. 47: 244-252 https://doi.org/10.1007/s00294-005-0563-7
  25. Silva, E. M., A. Machuca, and A. M. F. Milagres. 2005. Effect of cereal brans on Lentinula edodes growth and enzyme activities during cultivation on forestry waste. Lett. Appl. Microbiol. 40: 283-288 https://doi.org/10.1111/j.1472-765X.2005.01669.x
  26. Sunna, A. and G. Antranikian. 1997. Xylanolytic enzymes from fungi and bacteria. Crit. Rev. Biotechnol. 17: 39-67 https://doi.org/10.3109/07388559709146606
  27. Varela, E., T. Mester, and M. Tien. 2003. Culture conditions affecting biodegradation components of the brown-rot fungus Gloeophyllum traberm. Arch. Microb. 180: 251-256 https://doi.org/10.1007/s00203-003-0583-y