References
- Abbas, A., H. Koc, F. Liu, and M. Tien. 2005. Fungal degradation of wood: Initial proteomic analysis of extracellular proteins of Phanerochaete chrysosporium grown on oak substrate. Curr. Genet. 47: 49-56 https://doi.org/10.1007/s00294-004-0550-4
- Beg, Q. K., M. Kapoor, L. Mahajan, and G. S. Hoondai. 2001. Microbial xylanases and their industrial applications: A review. Appl. Microbiol. Biotechnol. 56: 326-338 https://doi.org/10.1007/s002530100704
- Berlin, A., N. Gilkes, D. Kilburn, V. Mazimenko, R. Bura, A. Markov, A. Skomarovsky, A. Gusakov, A. Sinitsyn, O. Okunev, I. Solovieva, and J. N. Saddler. 2006. Evaluation of cellulase preparations for hydrolysis of hardwood substrate. Appl. Biochem. Biotechnol. 129-132: 528-545
- Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
- Buswell, J. A., Y. Cai, and S. Chang. 1995. Effect of nutrient nitrogen and manganese on manganese peroxidase and laccase production by Lentinula (Lentinus) edodes. FEMS Lett. 128: 81-88 https://doi.org/10.1111/j.1574-6968.1995.tb07504.x
- Chakrit, T., Y. S. Lee, K. Rantanakhanokchai, S. Pinitglang, K. L. Kyu, M. S. Rho, and S. K. Lee. 2006. Purification and characterization of two endoxylanases from an alkaliphilic Bacillus halodurans C-1. J. Microbiol. Biotechnol. 16: 613-618
- Chandrakant, P. and V. S. Bisaria. 1998. Simultaneous bioconversion of cellulose and hemicellulose to ethanol. Crit. Rev. Biotechnol. 18: 295-331 https://doi.org/10.1080/0738-859891224185
- Choi, J. H., O. S. Lee, J. H. Shin, Y. Y. Kwak, Y. M. Kim, and I. K. Rhee. 2006. Thermostable xylanase encoded by xynA of Streptomyces thermocyaneoviolaceus: Cloning, purification, characterization and production of xylooligosaccharides. J. Microbiol. Biotechnol. 16: 57-63
- Christopher H. V., C. D. Trevor, and E. S. Colin. 2003. Biodegradation of Oak (Quercus alba) wood during growth of the Shiitake mushroom (Lentinula edodes): A molecular approach. J. Agric. Food Chem. 51: 947-956 https://doi.org/10.1021/jf020932h
- Hamada, N., K. Ishikawa, N. Fuse, R. Kodaira, M. Shimosaka, Y. Amano, T. Kanda, and M. Okazaki. 1999. Purification, characterization and gene analysis of exocellulase II (Ex-II) from the white rot basidiomycete Irpex lacteus. J. Biosci. Bioeng. 87: 442-451 https://doi.org/10.1016/S1389-1723(99)80092-9
- Hong, S. W., K. S. Shin, Y. Yoon, and W. K. Lee. 1986. Extracellular wood-degradative enzymes from Lentinus edodes JA01. Kor. J. Mycol. 14: 189-194
- Igarashi, K., M. Samejima, Y. Savuri, N. Habu, and K. E. L. Eriksson. 1997. Localization of cellobiose dehydrogenase in cellulose grown cultures of Phanerochaete chrysosporium. Fungal Genet. Biol. 21: 214-222 https://doi.org/10.1006/fgbi.1996.0954
- Koo, B. W., J. Y. Park, S. M. Lee, D. H. Choi, and I. G. Choi. 2005. Analysis of chemical and physical characteristics of log woods for oak mushroom production depending on cultivation periods and steam explosion treatment. Mokchae Konghak 33: 77-86
- Kremer, S. M. and P. M. Wood. 1992. Evidence that cellobiose oxidase from Phanerochaete chrysosporium is primarily an Fe(III) reductase. Eur. J. Biochem. 205: 133-138 https://doi.org/10.1111/j.1432-1033.1992.tb16760.x
-
Krisana, A., S. Rutchadaporn, G. Jarupan, E. Lily, T. Sutipa, and K. Kanyawim. 2005. Endo-1,4-
$\beta$ -xylanase from Aspergillus cf. niger BCC14405 isolated in Thailand: Purification, characterization and gene isolation. J. Biochem. Mol. Biol. 38: 17-23 https://doi.org/10.5483/BMBRep.2005.38.1.017 - Kusuma, K., G. H. Chon, J. S. Lee, J. Kongkiattikajorn, K. Ratanakhanokchai, K. L. Kyu, J. H. Lee, M. S. Roh, Y. Y. Choi, H. Park, and Y. S. Lee. 2006. Hydrolysis of agricultural residues and kraft pulps by xylanolytic enzymes from alkaliphilic Bacillus sp. strain BK. J. Microbiol. Biotechnol. 16: 1255-1261
- Laemli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685 https://doi.org/10.1038/227680a0
- Lee, C. C., D. W. S. Wong, and G. H. Robertson. 2001. Cloning and characterization of two cellulase genes from Lentinula edodes. FEMS Lett. 205: 355-360 https://doi.org/10.1111/j.1574-6968.2001.tb10972.x
- Lee, C. C., D. W. S. Wong, and G. H. Robertson. 2005. Cloning and characterization of the Xyn11A gene from Lentinula edodes. Protein J. 24: 21-26 https://doi.org/10.1007/s10930-004-0602-0
- Lee, Y. S., K. Ratanakhanokchai, W. Piyatheerawong, K. L. Kyu, M. S. Rho, Y. S. Kim, A. Om, J. W. Lee, O. H. Jhee, G. H. Chon, H. Park, and J. Kang. 2006. Production and location of xylanolytic enzymes in alkaliphilic Bacillus sp. K-1. J. Microbiol. Biotechnol. 16: 921-926
-
Makkar, R. S., A. Tsuneda, K. Tokuyasu, and Y. Mori. 2001. Lentinula edodes produces a multicomponent protein complex containing manganese (II)-dependent peroxidase, laccase and
${\beta}$ -glucosidase. FEMS Lett. 200: 175-179 - Mata, G. and J. M. Savoie. 1998. Extracellular enzyme activities in six Lentinula edodes strains during cultivation in wheat straw. World J. Microbiol. Biotechnol. 14: 513-519 https://doi.org/10.1023/A:1008886521091
- Polizeli, M. L. T. M., A. C. S. Rizzatti, and R. Monti. 2005. Xylanases from fungi: Properties and industrial application. Appl. Microbiol. Biotechnol. 67: 577-591 https://doi.org/10.1007/s00253-005-1904-7
-
Sakamoto, Y., T. Irie, and T. Sato. 2005. Isolation and characterization of a fruiting body-specific exo-
$\beta$ -1,3- glucanase-encoding gene, exg1, from Lentinula edodes. Curr. Genet. 47: 244-252 https://doi.org/10.1007/s00294-005-0563-7 - Silva, E. M., A. Machuca, and A. M. F. Milagres. 2005. Effect of cereal brans on Lentinula edodes growth and enzyme activities during cultivation on forestry waste. Lett. Appl. Microbiol. 40: 283-288 https://doi.org/10.1111/j.1472-765X.2005.01669.x
- Sunna, A. and G. Antranikian. 1997. Xylanolytic enzymes from fungi and bacteria. Crit. Rev. Biotechnol. 17: 39-67 https://doi.org/10.3109/07388559709146606
- Varela, E., T. Mester, and M. Tien. 2003. Culture conditions affecting biodegradation components of the brown-rot fungus Gloeophyllum traberm. Arch. Microb. 180: 251-256 https://doi.org/10.1007/s00203-003-0583-y