Synbiotic Synthesis of Oligosaccharides During Milk Fermentation by Addition of Leuconostoc Starter and Sugars

  • Seo, Dong-Mi (Department of Food Science and Technology, Research Center for Bioresource and Health, Chungbuk National University) ;
  • Kim, So-Young (Department of Food Science and Technology, Research Center for Bioresource and Health, Chungbuk National University) ;
  • Eom, Hyun-Ju (Department of Food Science and Technology, Research Center for Bioresource and Health, Chungbuk National University) ;
  • Han, Nam-Soo (Department of Food Science and Technology, Research Center for Bioresource and Health, Chungbuk National University)
  • Published : 2007.11.30

Abstract

Synthesis of oligosaccharides during milk fermentation was attempted by inoculating Leuconostoc citreum with Lactobacillus casei, Lb. delbrueckii subsp. bulgaricus, and Streptococcus thermophilus as starters. Dextransucrase of Ln. citreum worked as a catalyst for the transglycosylation reaction of sugars; sucrose was added as the glucose donor, and lactose or maltose acted as the acceptor compound for the reaction. When 4% sucrose was added in milk, glucosyl-lactose was synthesized (about 1%, w/v) after 1-2 days of fermentation at 15 or $25^{\circ}C$. Alternatively, when sucrose and maltose (2% each, w/v) were added, panose (about 1 %, w/v) and other isomaltooligosaccharides were made in a day at $15-35^{\circ}C$. Growth patterns of lactobacilli and streptococci starters were not affected by the coculture of leuconostoc starter, but the rate of acid synthesis was slightly slowed at every temperature. Addition of sugars in milk did not give any adverse effect on the lactate fermentation. Accordingly, the use of leuconostoc starter and addition of sugars in milk allowed the production of oligosaccharides-containing fermented milk, and application of this method will facilitate the extensive development of synbiotic lactate foods.

Keywords

References

  1. Adolfsson, O., S. N. Meydani, and R. M. Russell. 2004. Yogurt and gut function. Am. J. Clin. Nutr. 80: 245-256 https://doi.org/10.1093/ajcn/80.2.245
  2. AOAC. 1980. Official Methods of Analysis, 13th Ed. AOAC, Washington D.C
  3. Chambel, L., I. M. Chelo, L. Ze-Ze, L. G. Pedro, M. A. Santos, and R. Tenreiro. 2006. Leuconostoc pseudoficulneum sp. nov., isolated from a ripe fig. Int. J. Syst. Evol. Microbiol. 56: 1375-1381 https://doi.org/10.1099/ijs.0.64054-0
  4. Chung, C.-H. 2006. Production of glucooligosaccharides and mannitol from Leuconostoc mesenteroides B-742 fermentation and its separation from byproducts. J. Microbiol. Biotechnol. 16: 325-329
  5. Delzenne, N. M. 2003. Oligosaccharides: State of the art. Proc. Nutr. Soc. 62: 177-182
  6. Eom, H. J. 2002. Isolation of psychrotrophic Leuconostoc mesenteroides producing highly active dextransucrase and application to lactate-fermented foods. MS Thesis, Chungbuk National University, Cheongju, Korea
  7. Font de Valdez, G., G. S. de Giori, M. Garro, F. Mozzi, and G. Oliver. 1990. Lactic acid bacteria from naturally fermented vegetables. Microbiol. Alim. Nutr. 8: 175-179
  8. Gibson, G. R. and M. B. Roberfroid. 1995. Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. J. Nutr. 125: 1401-1412
  9. Gmeiner, M., W. Kneifel, K. D. Kulbe, R. Wouters, P. De Boever, L. Nollet, and W. Verstraete. 2000. Influence of a synbiotic mixture consisting of Lactobacillus acidophilus 74-2 and a fructooligosaccharide preparation on the microbial ecology sustained in a simulation of the human intestinal microbial ecosystem (SHIME reactor). Appl. Microbiol. Biotechnol. 53: 219-223 https://doi.org/10.1007/s002530050011
  10. Han, N. S., Y. S. Jung, H. J. Eom, Y. H. Koh, J. F. Robyt, and J. H. Seo. 2002. Simultaneous biocatalytic synthesis of panose during lactate fermentation in kimchi. J. Microbiol. Biotechnol. 12: 46-52
  11. Holzapfel, W. H., P. Haberer, R. Geisen, J. Bjorkroth, and U. Schillinger. 2001. Taxonomy and important features of probiotic microorganisms in food and nutrition. Am. J. Clin. Nutr. 73: 365-373 https://doi.org/10.1093/ajcn/73.2.365s
  12. Kim, H. Y., J. O. Yang, and G. E. Ji. 2005. Effect of bifidobacteria on production of allergy-related cytokines from mouse spleen cells. J. Microbiol. Biotechnol. 15: 265- 268
  13. Kitaoka, M. and J. F. Robyt. 1998. Large-scale preparation of highly purified dextransucrase from a high-producing constitutive mutant of Leuconostoc mesenteroides B-512FMC. Enzyme Microb. Technol. 23: 386-391 https://doi.org/10.1016/S0141-0229(98)00060-X
  14. Kunz, C. and S. Rudloff. 2006. Health promoting aspects of milk oligosaccharides. Int. Dairy J. 16: 1341-1346 https://doi.org/10.1016/j.idairyj.2006.06.020
  15. Lamoureux, L., D. Roy, and S. F. Gauthier. 2002. Production of oligosaccharides in yogurt containing bifidobacteria and yogurt cultures. J. Dairy Sci. 85: 1058-1069 https://doi.org/10.3168/jds.S0022-0302(02)74166-0
  16. Lee, J. S., G. Y. Heo, J. W. Lee, Y. J. Oh, J. A. Park, Y. H. Park, Y. R. Pyun, and J. S. Ahn. 2005. Analysis of kimchi microflora using denaturing gradient gel electrophoresis. Int. J. Food Microbiol. 102: 143-150 https://doi.org/10.1016/j.ijfoodmicro.2004.12.010
  17. Mahoney, R. R. 1998. Galactosyl-oligosaccharide formation during lactose hydrolysis: A review. Food Chem. 63: 147-154 https://doi.org/10.1016/S0308-8146(98)00020-X
  18. Martin-Sosa, S., M. J. Martin, L. A. Garcia-Pardo, and P. Hueso. 2003. Sialyloligosaccharides in human and bovine milk and in infant formulas: Variations with the progression of lactation. J. Dairy Sci. 86: 52-59 https://doi.org/10.3168/jds.S0022-0302(03)73583-8
  19. Meydani, S. N. and W. K. Ha. 2000. Immunologic effects of yogurt. Am. J. Clin. Nutr. 71: 861-872 https://doi.org/10.1093/ajcn/71.4.861
  20. Miyao, S. and T. Ogawa. 1988. Selective media for enumerating lactic acid bacteria groups from fermented pickles. Jpn. J. Food Eng. 35: 610-617
  21. Parvez, S., K. A. Malik, S. Ah Kang, and H. Y. Kim. 2006. Probiotics and their fermented food products are beneficial for health. J. Appl. Microbiol. 100: 1171-1185 https://doi.org/10.1111/j.1365-2672.2006.02963.x
  22. Playne, M. J. and R. Crittenden. 1996. Commercially available oligosaccharides. Bull. Int. Dairy Fed. 313: 10-22
  23. Roberfroid, M. B. 1998. Prebiotics and synbiotics: Concepts and nutritional properties. Br. J. Nutr. 80: 197-202
  24. Roberfroid, M. B., J. A. E. Van Loo, and G. R. Gibson. 1998. The bifidogenic nature of chicory inulin and its hydrolysis products. J. Nutr. 128: 11-19
  25. Robyt, J. F. 1995. Mechanisms in the glucansucrase synthesis of polysaccharides and oligosaccharides from sucrose. Adv. Carbohydr. Chem. Biochem. 51: 133-168 https://doi.org/10.1016/S0065-2318(08)60193-6
  26. Robyt, J. F. and R. Mukerjea. 1994. Separation and quantitative determination of nanogram quantities of maltodextrins and isomaltodextrins by thin-layer chromatography. Carbohydr. Res. 251: 187-202 https://doi.org/10.1016/0008-6215(94)84285-X
  27. Robyt, J. F. and S. H. Eklund. 1983. Relative, quantitative effects of acceptors in the reaction of Leuconostoc mesenteroides B-512F dextransucrase. Carbohydr. Res. 121: 279-286 https://doi.org/10.1016/0008-6215(83)84024-5
  28. Rowland, I. R., C. J. Rumney, J. T. Coutts, and L. C. Lievense. 1998. Effect of Bifidobacterium longum and inulin on gut bacterial metabolism and carcinogen-induced aberrant crypt foci in rats. Carcinogenesis 19: 281-285 https://doi.org/10.1093/carcin/19.2.281
  29. Schaafsma, G., W. J. A. Meuling, W. Van Dokkum, and C. Bouley. 1998. Effects of a milk product, fermented by Lactobacillus acidophilus and with fructo-oligosaccharides added, on blood lipids in male volunteers. Eur. J. Clin. Nutr. 52: 436-440 https://doi.org/10.1038/sj.ejcn.1600583
  30. Sul, S. Y., H. J. Kim, T. W. Kim, and H. Y. Kim. 2007. Rapid identification of Lactobacillus and Bifidobacterium in probiotic products using multiplex PCR. J. Microbiol. Biotechnol. 17: 490-495
  31. Tomomatsu, H. 1994. Health effects of oligosaccharides. Food Technol. 10: 61-64
  32. Witthuhn, R. C., T. Schoeman, and T. J. Britz. 2005. Characterisation of the microbial population at different stages of kefir production and kefir grain mass cultivation. Int. Dairy J. 15: 383-389 https://doi.org/10.1016/j.idairyj.2004.07.016