DOI QR코드

DOI QR Code

Improvement of Ergone Production from Mycelial Culture of Polyporus umbellatus

  • Lee, Wi-Young (Div. Biotechnology, Korea Forest Research Institute) ;
  • Park, Young-Ki (Div. Special Purpose Tree, Korea Forest Research Institute) ;
  • Ahn, Jin-Kwon (Div. Biotechnology, Korea Forest Research Institute)
  • Published : 2007.06.30

Abstract

Ergone, a fungal metabolite derived from ergosterol, was previously isolated and identified from Polyporus umbellatus. Ergone is a major component of P. umbellatus known to have anti-aldosteronic diuretic effect and also displays cytotoxic activities. Most of mushroom's fruit bodies used for test contained less than 10 ${\mu}g/g$ of ergone. But P. umbellatus have larger amount of ergone than any other mushrooms. In order to improve the ergone production from the submerged culture of P. umbellatus, several factors including medium composition, culture conditions (temperature and pH) and different combinations of co-cultivation with various mycelia were studied. Among various carbon sources examined, starch proved to be most effective for the production of mycelia. The optimum pH and temperature for a flask culture of P. umbellatus mycelia were found to be 4.5 and $25^{\circ}C$, respectively. Under the optimized culture conditions, both the ergone production (86.9 ${\mu}g/g$) and mycelial growth (3.5 g/l) increased when P. umbellatus was cultured with Armillariella mellea. When the optimized conditions were applied, both mycelium and ergone production were significantly enhanced.

Keywords

References

  1. Belinky, P. A., Masaphy, S., Levanon, D., Hadar, Y. and Dosoretz, C. G. 1994. Effect of medium composition on 1-octene-3-ol formation in submerged cultures of Pleurotus pulmonarius. Appl. Microbiol. Biotechnol. 40: 629-633 https://doi.org/10.1007/BF00173319
  2. Gross, B., Yonnet, G., Picque, D., Brunerie, P., Corrieu, G. and Asther, M. 1990. Production of methylanthranilate by the basidiomycete Pycnoporus cinnabarinus (Karst.). Appl. Microbiol. Biotechnol. 34: 387-391
  3. Lee, W. Y., Park, Y. K., Ahn, J. K., Park, S. Y. and Lee, H. J. 2005. Cytotoxic activity of ergosta-4,6,8(14),22-tetraen-3-one from the sclerotia of Polyporus umbellatus. Bull. Korean Chem. Soc. 26: 1464-1466 https://doi.org/10.5012/bkcs.2005.26.9.1464
  4. Litchfield, J. H. 1997. Microbiological production of lactic acid. Adv. Appl. Microbiol. 42: 45-95
  5. Niedermeyer, T. H. J., Lindequist, U., Mentel, R., Gordes, D., Schmidt, E., Thurow, K. and Lalk, M. 2005. Antiviral Terpenoid constituents of Ganoderma pfeifferi. J. Nat. Prod. 68: 1728-1731 https://doi.org/10.1021/np0501886
  6. Ohta, K., Yaoita, Y., Matsuda, N. and Kikuchi, M. 1996. Sterol constituents from the sclerotium of Polyporus umbellatus fries. Natural Medicines. 50: 179-181
  7. Pandey, A., Selvakrumar, P., Soccol, C. R. and Nigam, P. 1999. Solid-state fermentation for the production of industrial enzymes. Curr. Sci. 77: 149-162
  8. Papagianni, M., Mattey, M. and Kristiansen, B. 1999. The influence of glucose concentration on citric acid production and morphology of Aspergillus niger in batch and culture. Enzyme & Micro. Technol. 25: 71O-711
  9. Price, M. J. and Worth, G. K. 1974. The occurrence of ergosta-4,6,8(14),22-tetraen-3-one in several fungi. Aust. J. Chem. 27: 2505-2507 https://doi.org/10.1071/CH9742505
  10. Purohit, J. S., Dutta, J. R. Nanda, R. K. and Banerjee, R. 2006. Strain improvement for tannase production from co-culture of Aspergillus foetidus and Rhizopus oryzae. Bioresource Technology 97: 795-801 https://doi.org/10.1016/j.biortech.2005.04.031
  11. Seitz, L. M. and Pomeranz, Y. 1983. Ergosterol, Ergosta-4,6,8(14),22-tetraen-3-one, Ergosterol peroxide, and chitin in Ergoty barley, rye, and other grasses. J. Agric. Food Chem. 31: 1036-1038 https://doi.org/10.1021/jf00119a029
  12. Shim, J. O., Som, S. G., Kim, Y. H., Lee, Y. S., Lee, J. Y., Lee, T. S., Lee, S. S. and Lee, M. W. 1997. The cultural conditions affecting the mycelium growth on Grifola umbellata. The Korean J. Mycol. 25: 209-218
  13. Tanaka, N., Hosoi, K., Tanaka, D. and Takahashi, M.. 1996. Photochemical reaction of Ergosta-4,6,8(14),22-tetraen-3-one. Chem. Pharm. Bull. 44: 843-846 https://doi.org/10.1248/cpb.44.843
  14. Tommerup, I. C. and Broadbent, D. 1975. Nuclear fusion, meiosis and the origin of dikaryotic hyphae in Armillariella mellea. Arch. Microbiol. 103: 279-282 https://doi.org/10.1007/BF00436361
  15. Wee, Y. J., Kim, J. N., Yun, J. S. and Ryu, H. W. 2005. Optimum conditions for the biological production of lactic acid by a newly isolated lactic acid bacterium, Lactobacillus sp. RKY2. Biotechnol. Bioprocess Eng. 10: 23-28 https://doi.org/10.1007/BF02931178
  16. Xiaoke, X. and Shunxing, G. 2005. Morphological characteristics of sclerotia formed from hyphae of Grifola umbellata under artificial conditions. Mycopathologia 159: 583-590 https://doi.org/10.1007/s11046-005-0255-3
  17. Yang, F. C. and Liau, V. B. 1998. Effects of cultivating conditions on the mycelial growth of Ganoderma lucidum in submerged flask cultures. Bioprocess Eng. 19: 233-236
  18. Yuan, D., Mori, J., Komatsu, K. I., Makino, T. and Kano, Y. 2004. An anti-aldosteronic diuretic component (Drain dampness) in Polyporus sclerotium. Biol. Pharm. Bull. 27: 867-870 https://doi.org/10.1248/bpb.27.867
  19. Yuan, D., Yamamoto, K. I., Bi, K., Zhang, P., Liu, F. and Kano, Y. 2003. Studies on the marker compounds for standardization of traditional Chinese medicine 'Polyporus sclerotium'. Yakugaku Zasshi. 123: 53-62 https://doi.org/10.1248/yakushi.123.53