Degradation of Malic Acid by Issatchenkia orientalis KMBL 5774, an Acidophilic Yeast Strain Isolated from Korean Grape Wine Pomace

  • Seo, Sung-Hee (Department of Life and Food Sciences, College of Agriculture and Life Sciences, Kyungpook National University) ;
  • Rhee, Chang-Ho (Department of Life and Food Sciences, College of Agriculture and Life Sciences, Kyungpook National University) ;
  • Park, Heui-Dong (Department of Life and Food Sciences, College of Agriculture and Life Sciences, Kyungpook National University)
  • Published : 2007.12.31

Abstract

Several yeast strains degrading malic acid as a sole carbon and energy source were isolated from Korean wine pomace after enrichment culture in the presence of malic acid. Among them, the strain designated as KMBL 5774 showed the highest malic acid degrading ability. It was identified as Issatchenkia orientalis based on its morphological and physiological characteristics as well as the nucleotide sequences of the internal transcribed spacer (ITS) 1-5.8S rDNA-ITS II region. Phylogenetic analysis of the ITS I-5.8S rDNA-ITS II sequences showed that the KMBL 5774 is the closest to I. orientalis zhuan 192. Identity of the sequences of the KMBL 5774 was 99.5% with those of I. orientalis zhuan 192. The optimal pH of the media for the growth and malic acid degradation by the yeast was between 2.0 and 3.0, suggesting that the strain is an acidophile. Under the optimized conditions, the yeast could degrade 95.5% of the malic acid after 24 h of incubation at $30^{\circ}C$ in YNB media containing 2% malic acid as a sole carbon and energy source.

Keywords

References

  1. Altschul, S.F., T.L. Madden, A.A. Schäffer, J. Zhang, Z. Zhang, W. Miller, and D.J. Lipman. 1997. Gapped BLAST and PSIBLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389-3402 https://doi.org/10.1093/nar/25.17.3389
  2. Amador, P., F. Borges, and M. Corte-Real. 1996. Biochemical characterization of a mutant of the yeast Pichia anomala derepressed for malic acid utilization in the presence of glucose. FEMS Microbiol. Lett. 141, 227-231 https://doi.org/10.1111/j.1574-6968.1996.tb08389.x
  3. Ansanay, V., S. Dequin, C. Camarasa, V. Schaeffer, J. Grivet, B. Blondin, J. Salmon, and P. Barre. 1996. Malolactic fermentation by engineered Saccharomyces cerevisiae as compared with engineered Schizosaccharomyces pombe. Yeast 12, 215-225 https://doi.org/10.1002/(SICI)1097-0061(19960315)12:3<215::AID-YEA903>3.0.CO;2-M
  4. Baranowski, K. and F. Radler. 1984. The glucose-dependent transport of L-malate in Zygosaccharomyces bailii. Antonie Van Leeuwenhoek 50, 329-340 https://doi.org/10.1007/BF00394646
  5. Barnett, J.A. and H.L. Kornberg. 1960. The utilisation by yeast of acids of the tricarboxylic acid cycle. J. Gen. Microbiol. 23, 65-82 https://doi.org/10.2323/jgam.23.65
  6. Beelman, R.B. and J.F. Gallander. 1979. Wine deacidification. Adv. Food Res. 25, 1-53 https://doi.org/10.1016/S0065-2628(08)60234-7
  7. Benda, I. and A. Schmitt. 1969. Acid reduction in must by various strains of the genus Schizoaccharomyces. Weinberg Keller 16, 71-83
  8. Cassio, F. and C. Leao. 1993. A comparative study on the transport of L-malic acid and other short-chain carboxylic acids in the yeast Candida utilis: evidence for a general organic acid permease. Yeast 9, 743-752 https://doi.org/10.1002/yea.320090708
  9. Clemente-Jimenez, J.M., L. Mingorance-Cazorla, S. Martinez- Rodriguez, F.J.L. Heras-Viazquez, and F. Rodriguez-Vico. 2004. Molecular characterization and oenological properties of wine yeasts isolated during spontaneous fermentation of six varieties of grape must. Food Microbiol. 21, 149-155 https://doi.org/10.1016/S0740-0020(03)00063-7
  10. Corte-Real, M. and C. Leao. 1990. Transport of malic acid and other dicarboxylic acids in the yeast Hansenula anomala. Appl. Environ. Microbiol. 56, 1109-1113
  11. Corte-Real, M. and C. Leao. 1992. Deacidification of grape juice with derepressed mutants of the yeast Hansenula anomala. Appl. Microbiol. Biotechnol. 36, 663-666
  12. Corte-Real, M., C. Leao, and N. Van Uden. 1989. Transport of L-malic acid and other dicarboxylic acids in the yeast Candida sphaerica. Appl. Environ. Microbiol. 31, 551-555
  13. Delcourt, F., P. Taillandier, F. Vidal, and P. Strehaiano. 1995. Influence of pH, malic acid and glucose concentrations on malic acid consumption by Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 43, 321-324 https://doi.org/10.1007/BF00172832
  14. Fatichenti, F., G.A. Farris, P. Deiana, and S. Ceccarelli. 1984. Malic acid production and consumption by selected Saccharomyces cerevisiae under anaerobic and aerobic conditions. Appl. Microbiol. Biotechnol. 19, 427-429 https://doi.org/10.1007/BF00454382
  15. Fuck, E., G. Stark, and F. Radler. 1973. Malic acid metabolism in Saccharomyces II. Partial purification and characteristics of a 'malic' enzyme. Arch. Mikrobiol. 89, 223-231 https://doi.org/10.1007/BF00422202
  16. Gallander, J.F. 1977. Deacidification of eastern table wines with Schizosaccharomyces pombe. Am. J. Enol. Vitic. 28, 65-68
  17. Gao, C. and G.H. Fleet. 1995. Degradation of malic and tartaric acids by high density cell suspensions of wine yeasts. Food Microbiol. 12, 65-71 https://doi.org/10.1016/S0740-0020(95)80080-8
  18. Goodban, A.E. and J.B. Stark. 1957. Rapid method for determination of malic acid. Anal. Chem. 29, 283-287 https://doi.org/10.1021/ac60122a032
  19. Granchi, L., M. Bosco, and M. Vicenzini. 1999. Rapid detection and quantification of yeast species during spontaneous wine fermentation by PCR-RFLP analysis of the rDNA ITS region. J. Appl. Microbiol. 87, 949-956 https://doi.org/10.1046/j.1365-2672.1999.00600.x
  20. Henick-Kling, T. 1993. Malolactic fermentation, p. 289-326. In G.H. Fleet (ed.), Wine microbiology and biotechnology. Harwood Academic, Chur, Switzerland
  21. Kimura, M. 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111-120 https://doi.org/10.1007/BF01731581
  22. Kuczynski, J.T. and F. Radler. 1982. The anaerobic metabolism of malate of Saccharomyces bailii and the partial purification and characterization of malic enzyme. Arch. Microbiol. 131, 266-270 https://doi.org/10.1007/BF00405891
  23. Kurtzman, C.P. 1998. Issatchenkia Kudryavtsev emend. Kurtzman, Smiley & Johnson, p. 221-226. In C.P. Kurtzman and J.W. Fell (eds.), The yeasts, a taxonomic study, 4th ed. Elsevier Science B.V., Amsterdam
  24. Las Heras-Viazquez, F.J., L. Mingorance-Cazorla, J.M. Clemente- Jimenez, and F. Rodriguez-Vico. 2003. Identification of yeast species from orange fruit and juice by RFLP and sequence analysis of the 5.8S rRNA gene and internal transcribed spacers. FEMS Yeast Res. 3, 3-9 https://doi.org/10.1111/j.1567-1364.2003.tb00132.x
  25. Magyar, I. and I. Panyik. 1989. Biological deacidification of wine with Schizosaccharomyces pombe entrapped in Ca-alginate gel. Am. J. Enol. Vitic. 40, 233-240
  26. Munyon, J.R. and C.W. Nagel. 1977. Comparison of methods of deacidification of musts and wines. Am. J. Enol. Vitic. 28, 79-87
  27. Ness, F., F. Lavallee, D. Dubourdieu, M. Aigle, and L. Dulan. 1993. Identification of yeast strains using the polymerase chain reaction. J. Sci. Food Agric. 62, 89-94 https://doi.org/10.1002/jsfa.2740620113
  28. Okuma, Y., A. Endo, H. Iwasaki, Y. Ito, and S. Goto. 1986. Isolation and properties of ethanol-using yeasts with acid and ethanol tolerance. J. Ferment. Technol. 64, 379-382 https://doi.org/10.1016/0385-6380(86)90023-3
  29. Osothsilp, C. 1987. Genetic and biochemical studies of malic acid metabolism in Schizosaccharomyces pombe. Ph. D. thesis. University of Guelph, Guelph, Ontario, Canada
  30. Osothsilp, C. and R.E. Subden. 1986. Malate transport in Schizosaccharomyces pombe. J. Bacteriol. 168, 1439-1443 https://doi.org/10.1128/jb.168.3.1439-1443.1986
  31. Park, H.D., S.H. Kim, J.H. Shin, and I.K. Rhee. 1999. Genetic analysis of alcohol yeasts from Korean traditional liquor by polymerase chain reaction. J. Microbiol. Biotechnol. 9, 744-750
  32. Pines, O., S. Even-Ram, N. Elnathan, E. Battat, O. Aharonov, D. Gibson, and I. Goldberg. 1996. The cytosolic pathway of L-malic acid synthesis in Saccharomyces cerevisiae: role of fumarase. Appl. Microbiol. Biotech. 46, 393-399
  33. Pines, O., S. Shemesh, E. Battat, and I. Goldberg. 1997. Overexpression of cytosolic malate dehydrogenase (MDH2) causes overproduction of specific organic acids in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 48, 248-255 https://doi.org/10.1007/s002530051046
  34. Pretorius, I.S. 2000. Tailoring wine yeast for the new millennium: novel approaches to the ancient art of winemaking. Yeast 16, 675-729 https://doi.org/10.1002/1097-0061(20000615)16:8<675::AID-YEA585>3.0.CO;2-B
  35. Queiros, O., M. Casal, S. Althoff, P. Morades-Ferreira, and C. Leao. 1998. Isolation and characterization of Kluyveromyces marxianus mutants deficient in malate transport. Yeast 14, 401-407 https://doi.org/10.1002/(SICI)1097-0061(19980330)14:5<401::AID-YEA234>3.0.CO;2-T
  36. Radler, F. 1993. Yeasts-metabolism of organic acids, p. 165-182. In G.H. Fleet (ed.), Wine Microbiology and Biotechnology. Harwood Academic, Chur, Switzerland
  37. Ramon-Portugal, F., I. Seiller, P. Taillandier, J.L. Favarel, F. Nepveu, and P. Strehaiano. 1999. Kinetics of production and consumption of organic acids during alcoholic fermentation by Saccharomyces cerevisiae. Food Technol. Biotechnol. 37, 235-240
  38. Rankine, B.C. 1966. Decomposition of L-malic acid by wine yeasts. J. Sci. Food Agric. 17, 312-316 https://doi.org/10.1002/jsfa.2740170707
  39. Rodriquez, S.B. and R.J. Thornton. 1989. A malic acid-dependent mutant of Schizosaccharomyces malidevorans. Arch. Microbiol. 152, 564-566 https://doi.org/10.1007/BF00425487
  40. Rodriquez, S.B. and R.J. Thornton. 1990. Factors influencing the utilization of L-malate by yeasts. FEMS Microbiol. Lett. 72, 17-22
  41. Rosini, G. and M. Ciani. 1993. Influence of sugar type and level on malate metabolism of immobilized Schizosaccharomyces pombe cells. Am. J. Enol. Vitic. 44, 113-117
  42. Ruffner, H.P. 1982. Metabolism of tartaric and malic acids in Vitis. Vitis 21, 247-259
  43. Saayman, M., H.J.J. Van Vuuren, W.H. Van Zyl, and M. Viljoen- Bloom. 2000. Differential uptake of fumarate by Candida utilis and Schizosaccharomyces pombe. Appl. Microbiol. Biotechnol. 54, 792-798 https://doi.org/10.1007/s002530000469
  44. Saitou, N., M. Nei, and L.S. Lerman. 1987. The neighbor-joining method, a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425
  45. Schwartz, H. and F. Radler. 1988. Formation of L(-)malate by Saccharomyces cerevisiae during fermentation. Appl. Microbiol. Biotechnol. 27, 553-560 https://doi.org/10.1007/BF00451631
  46. Snow, P.G. and J.F. Gallander. 1979. Deacidification of white table wines through partial fermentation with Schizosaccharomyces pombe. Am. J. Enol. Vitic. 30, 45-48
  47. Subden, R.E., A. Krizus, C. Osothsilp, M. Viljoen, and H.J.J. Van Vuuren. 1998. Mutational analysis of the malate pathways in Schizosaccharomyces pombe. Food Res. Int. 31, 37-42 https://doi.org/10.1016/S0963-9969(98)00056-8
  48. Taillandier, P., J.P. Riba, and P. Strehaiano. 1988. Malate utilization by Schizosaccharomyces pombe. Biotechnol. Lett. 10, 469-472 https://doi.org/10.1007/BF01027058
  49. Taillandier, P. and P. Strehaiano. 1991. The role of L-malic acid in the metabolism of Schizosaccharomyces pombe: substrate consumption and cell growth. Appl. Microbiol. Biotechnol. 35, 541-543
  50. Thompson, J.D., T.J. Gibson, F. Plewniak, F. Jeanmougin, and D.G. Higgens. 1997. The CLUSTAL X windows interface, flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24, 4876-4882
  51. Thornton, R.J. and S.B. Rodriguez. 1996. Deacidification of red and white wines by a mutant of Schizosaccharomyces malidevorans under commercial winemaking conditions. Food Microbiol. 13, 475-482 https://doi.org/10.1006/fmic.1996.0054
  52. Torija, M.J., N. Rozes, M. Poblet, J.M. Guillamon, and A. Mas. 2001. Yeast population dynamics in spontaneous fermentations: comparison between two different wine-producing areas over a period of three years. Antonie Van Leeuwenhoek 79, 345-352 https://doi.org/10.1023/A:1012027718701
  53. Volschenk, H., M. Viljoen, J. Grobler, B. Petzold, F. Bauer, R.E. Subden, R.A. Young, A. Lonvaud, M. Denayrolles, and H.J.J. Van Vuuren. 1997. Engineering pathways for malate degradation in Saccharomyces cerevisiae. Nat. Biotechnol. 15, 253-257 https://doi.org/10.1038/nbt0397-253
  54. Volschenk, H., M. Viljoen-Bloom, R.E. Subden, and H.J.J. Van Vuuren. 2001. Malo-ethanolic fermentation in grape must by recombinant strains of Saccharomyces cerevisiae. Yeast 18, 963-970 https://doi.org/10.1002/yea.743
  55. Wibowo, D., R. Eschenbruch, C.R. Davis, G.H. Fleet, and T.H. Lee. 1985. Occurrence and growth of lactic acid bacteria in wine: a review. Am. J. Enol. Vitic. 24, 1-4
  56. Yokotsuka, K., A. Otaki, A. Naitoh, and H. Tanaka. 1993. Controlled simultaneous deacidification and alcohol fermentation of a high-acid grape must using two immobilized yeasts, Schizosaccharomyces pombe and Saccharomyces cerevisiae. Am. J. Enol. Vitic. 44, 371-377