Effect of gacS and gacA Mutations on Colony Architecture, Surface Motility, Biofilm Formation and Chemical Toxicity in Pseudomonas sp. KL28

  • Choi, Kyung-Soon (Department of Microbiology, Changwon National University) ;
  • Veeraragouda, Yaligara (Department of Microbiology, Changwon National University) ;
  • Cho, Kyoung-Mi (Department of Microbiology, Changwon National University) ;
  • Lee, Soo-O (Department of Microbiology, Changwon National University) ;
  • Jo, Geuk-Rae (Electron Microscopy Section, College of Medicine, Inje University) ;
  • Cho, Kyung-Yun (Department of Biotechnology, Hoseo University) ;
  • Lee, Kyoung (Department of Microbiology, Changwon National University)
  • Published : 2007.12.31

Abstract

GacS and GacA proteins form a two component signal transduction system in bacteria. Here, Tn5 transposon gacS and gacA (Gac) mutants of Pseudomonas sp. KL28, an alkylphenol degrader, were isolated by selecting for smooth colonies of strain KL28. The mutants exhibited reduced ability to migrate on a solid surface. This surface motility does not require the action of flagella unlike the well-studied swarming motility of other Pseudomonas sp. The Gac mutants also showed reduced levels of biofilm and pellicle formation in liquid culture. In addition, compared to the wild type KL28 strain, these mutants were more resistant to high concentrations of m-cresol but were more sensitive to $H_2O_2$, which are characteristics that they share with an rpoS mutant. These results indicate that the Gac regulatory cascade in strain KL28 positively controls wrinkling morphology, biofilm formation, surface translocation and $H_2O_2$ resistance, which are important traits for its capacity to survive in particular niches.

Keywords

References

  1. Bertani, L.E. and G. Bertani. 1970. Preparation and characterization of temperate, non-inducible bacteriophage P2 (host: Escherichia coli). J. Gen. Virol. 6, 201-212 https://doi.org/10.1099/0022-1317-6-2-201
  2. Caiazza, N.C., J.H. Merritt, K.M. Brothers, and G.A. O'Toole. 2007. Inverse regulation of biofilm formation and swarming motility by Pseudomonas aeruginosa PA14. J. Bacteriol. 189, 3603-3612 https://doi.org/10.1128/JB.01685-06
  3. Chatterjee, A., Y. Cui, H. Yang, A. Collmer, J.R. Alfano, and A.K. Chatterjee. 2003. GacA, the response regulator of a twocomponent system, acts as a master regulator in Pseudomonas syringae pv. tomato DC3000 by controlling regulatory RNA, transcriptional activators, and alternate sigma factors. Mol. Plant Microbe Interact. 16, 1106-1117 https://doi.org/10.1094/MPMI.2003.16.12.1106
  4. Davies, J.A., J.J. Harrison, L.L. Marques, G.R. Foglia, C.A. Stremick, D.G. Storey, R.J. Turner, M.E. Olson, and H. Ceri. 2007. The GacS sensor kinase controls phenotypic reversion of small colony variants isolated from biofilms of Pseudomonas aeruginosa PA14. FEMS Microbiol. Ecol. 59, 32-46 https://doi.org/10.1111/j.1574-6941.2006.00196.x
  5. Dubern, J.F. and G.V. Bloemberg. 2006. Influence of environmental conditions on putisolvins I and II production in Pseudomonas putida strain PCL1445. FEMS Microbiol. Lett. 263, 169-175 https://doi.org/10.1111/j.1574-6968.2006.00406.x
  6. Goodman, A.L., B. Kulasekara, A. Rietsch, D. Boyd, R.S. Smith, and S. Lory. 2004. A signaling network reciprocally regulates genes associated with acute infection and chronic persistence in Pseudomonas aeruginosa. Dev. Cell 7, 745-754 https://doi.org/10.1016/j.devcel.2004.08.020
  7. Hassett, D.J., J.F. Ma, J.G. Elkins, T.R. McDermott, U.A. Ochsner, S.E. West, C.T. Huang, J. Fredericks, S. Burnett, P.S. Stewart, G. McFeters, L. Passador, and B.H. Iglewski. 1999. Quorum sensing in Pseudomonas aeruginosa controls expression of catalase and superoxide dismutase genes and mediates biofilm susceptibility to hydrogen peroxide. Mol. Microbiol. 34, 1082-1093 https://doi.org/10.1046/j.1365-2958.1999.01672.x
  8. Heeb, S. and D. Haas. 2001. Regulatory roles of the GacS/GacA two-component system in plant-associated and other Gramnegative bacteria. Mol. Plant Microbe Interact. 14, 1351-1363 https://doi.org/10.1094/MPMI.2001.14.12.1351
  9. Heeb, S., C. Valverde, C. Gigot-Bonnefoy, and D. Haas. 2005. Role of the stress sigma factor RpoS in GacA/RsmA-controlled secondary metabolism and resistance to oxidative stress in Pseudomonas fluorescens CHA0. FEMS Microbiol. Lett. 243, 251-258 https://doi.org/10.1016/j.femsle.2004.12.008
  10. Jeong, J.J., J.H. Kim, C.K. Kim, I. Hwang, and K. Lee. 2003. 3- and 4-alkylphenol degradation pathway in Pseudomonas sp. strain KL28: genetic organization of the lap gene cluster and substrate specificities of phenol hydroxylase and catechol 2,3-dioxygenase. Microbiology 149, 3265-3277 https://doi.org/10.1099/mic.0.26628-0
  11. Kang, B.R., B.H. Cho, A.J. Anderson, and Y.C. Kim. 2004. The global regulator GacS of a biocontrol bacterium Pseudomonas chlororaphis O6 regulates transcription from the rpoS gene encoding a stationary-phase sigma factor and affects survival in oxidative stress. Gene 325, 137-143 https://doi.org/10.1016/j.gene.2003.10.004
  12. Kay, E., C. Dubuis, and D. Haas. 2005. Three small RNAs jointly ensure secondary metabolism and biocontrol in Pseudomonas fluorescens CHA0. Proc. Natl. Acad. Sci. USA 102, 17136-17141
  13. Kay, E., B. Humair, V. Denervaud, K. Riedel, S. Spahr, L. Eberl, C. Valverde, and D. Haas. 2006. Two GacA-dependent small RNAs modulate the quorum-sensing response in Pseudomonas aeruginosa. J. Bacteriol. 188, 6026-6033 https://doi.org/10.1128/JB.00409-06
  14. Kinscherf, T.G. and D.K. Willis. 1999. Swarming by Pseudomonas syringae B728a requires gacS (lemA) and gacA but not the acylhomoserine lactone biosynthetic gene ahlI. J. Bacteriol. 181, 4133-4136
  15. Kohler, T., L.K. Curty, F. Barja, C. Van Delden, and J.C. Pechere. 2000. Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili. J. Bacteriol. 182, 5990-5996 https://doi.org/10.1128/JB.182.21.5990-5996.2000
  16. Kovach, M.E., P.H. Elzer, D.S. Hill, G.T. Robertson, M.A. Farris, R.M. Roop, 2nd, and K.M. Peterson. 1995. Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166, 175-176 https://doi.org/10.1016/0378-1119(95)00584-1
  17. Larsen, R.A., M.M. Wilson, A.M. Guss, and W.W. Metcalf. 2002. Genetic analysis of pigment biosynthesis in Xanthobacter autotrophicus Py2 using a new, highly efficient transposon mutagenesis system that is functional in a wide variety of bacteria. Arch. Microbiol. 178, 193-201 https://doi.org/10.1007/s00203-002-0442-2
  18. Lee, K., E.K. Ryu, K.S. Choi, M.C. Cho, J.J. Jeong, E.N. Choi, S.O. Lee, D.Y. Yoon, I. Hwang, and C.K. Kim. 2006. Identification and expression of the cym, cmt, and tod catabolic genes from Pseudomonas putida KL47: expression of the regulatory todST genes as a factor for catabolic adaptation. J. Microbiol. 44, 192-199
  19. Mark, G., J.P. Morrissey, P. Higgins, and F. O'Gara. 2006. Molecularbased strategies to exploit Pseudomonas biocontrol strains for environmental biotechnology applications. FEMS Microbiol. Ecol. 56, 167-177 https://doi.org/10.1111/j.1574-6941.2006.00056.x
  20. O'Toole, G.A. and R. Kolter. 1998. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol. Microbiol. 28, 449-461 https://doi.org/10.1046/j.1365-2958.1998.00797.x
  21. Overhage, J., S. Lewenza, A.K. Marr, and R.E. Hancock. 2007. Identification of genes involved in swarming motility using a Pseudomonas aeruginosa PAO1 mini-Tn5-lux mutant library. J. Bacteriol. 189, 2164-2169 https://doi.org/10.1128/JB.01623-06
  22. Park, J.-H., I. Hwang, J.-W. Kim, S.O. Lee, B. Conway, E.P. Greenberg, and K. Lee. 2001. Characterization of quorumsensing signaling molecules produced by Burkholderia capacia G4. J. Microbiol. Biotech. 11, 804-811
  23. Park, S.Y., Y.J. Heo, Y.S. Choi, E. Deziel, and Y.H. Cho. 2005. Conserved virulence factors of Pseudomonas aeruginosa are required for killing Bacillus subtilis. J. Microbiol. 43, 443-450
  24. Parkins, M.D., H. Ceri, and D.G. Storey. 2001. Pseudomonas aeruginosa GacA, a factor in multihost virulence, is also essential for biofilm formation. Mol. Microbiol. 40, 1215-1226 https://doi.org/10.1046/j.1365-2958.2001.02469.x
  25. Poritsanos, N., C. Selin, W.G. Fernando, S. Nakkeeran, and T.R. De Kievit. 2006. A GacS deficiency does not affect Pseudomonas chlororaphis PA23 fitness when growing on canola, in aged batch culture or as a biofilm. Can. J. Microbiol. 52, 1177-1188 https://doi.org/10.1139/W06-079
  26. Shingler, V., J. Powlowski, and U. Marklund. 1992. Nucleotide sequence and functional analysis of the complete phenol/3,4- dimethylphenol catabolic pathway of Pseudomonas sp. strain CF600. J. Bacteriol. 174, 711-724 https://doi.org/10.1128/jb.174.3.711-724.1992
  27. Stanier, R.Y., N.J. Palleroni, and M. Doudoroff. 1966. The aerobic pseudomonads: a taxomonic study. J. Gen. Microbiol. 43, 159-271 https://doi.org/10.1099/00221287-43-2-159
  28. Suh, S.J., L. Silo-Suh, D.E. Woods, D.J. Hassett, S.E. West, and D.E. Ohman. 1999. Effect of rpoS mutation on the stress response and expression of virulence factors in Pseudomonas aeruginosa. J. Bacteriol. 181, 3890-3897
  29. Whistler, C.A., N.A. Corbell, A. Sarniguet, W. Ream, and J.E. Loper. 1998. The two-component regulators GacS and GacA influence accumulation of the stationary-phase sigma factor sigmaS and the stress response in Pseudomonas fluorescens Pf-5. J. Bacteriol. 180, 6635-6641
  30. Yun, J.I., K.M. Cho, J.K. Kim, S.O. Lee, K. Cho, and K. Lee. 2007. Mutation of rpoS enhances Pseudomonas sp. KL28 growth at higher concentrations of m-cresol and changes its surface-related phenotypes. FEMS Microbiol. Lett. 269, 97-103 https://doi.org/10.1111/j.1574-6968.2006.00610.x