Biological Pretreatment of Softwood Pinus densiflora by Three White Rot Fungi

  • Lee, Jae-Won (Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University) ;
  • Gwak, Ki-Seob (Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University) ;
  • Park, Jun-Yeong (Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Park, Mi-Jin (Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University) ;
  • Choi, Don-Ha (Department of Wood Chemistry and Microbiology, Korea Forest Research Institute) ;
  • Kwon, Mi (Department of Forest Products, College of Forest Sciences, Kookmin University) ;
  • Choi, In-Gyu (Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University)
  • Published : 2007.12.31

Abstract

The effects of biological pretreatment on the Japanese red pine Pinus densiflora, was evaluated after exposure to three white rot fungi Ceriporia lacerata, Stereum hirsutum, and Polyporus brumalis. Change in chemical composition, structural modification, and their susceptibility to enzymatic saccharification in the degraded wood were analyzed. Of the three white rot fungi tested, S. hirsutum selectively degraded the lignin of this sortwood rather than the holocellulose component. After eight weeks of pretreatment with S. hirsutum, total weight loss was 10.7%, while lignin loss was the highest at 14.52% among the tested samples. However, holocellulose loss was lower at 7.81 % compared to those of C. lacerata and P. brumalis. Extracelluar enzymes from S. hirsutum showed higher activity of ligninase and lower activity of cellulase than those from other white rot fungi. Thus, total weight loss and changes in chemical composition of the Japanese red pine was well correlated with the enzyme activities related with lignin- and cellulose degradation in these fungi. Based on the data obtained from analysis of physical characterization of degraded wood by X-ray Diffractometry (XRD) and pore size distribution, S. hirsutum was considered as an effective potential fungus for biological pretreatment. In particular, the increase of available pore size of over 120 nm in pretreated wood powder with S. hirsutum made enzymes accessible for further enzymatic saccharification. When Japanese red pine chips treated with S. hirsutum were enzymatically saccharified using commercial enzymes (Cellulclast 1.5 L and Novozyme 188), sugar yield was greatly increased (21.01 %) compared to non-pre treated control samples, indicating that white rot fungus S. hirsutum provides an effective process in increasing sugar yield from woody biomass.

Keywords

References

  1. Bothwell, M.K., L.P. Walker, K.B. Wilson, D.C. Irwin, and M. Price. 1993. Synergism between pure Thermomonospora fusca and Trichoderma reesei cellulases. Biomass Bioenergy 4, 293-299 https://doi.org/10.1016/0961-9534(93)90088-L
  2. Cheung, S.W. and B.C. Anderson. 1997. Laboratory investigation of ethanol production from municipal primary waste water solids. Bioresour. Technol. 59, 81-96 https://doi.org/10.1016/S0960-8524(96)00109-5
  3. Cowling, E.B. and T.K. Kirk. 1976. Properties of cellulose and lignocellulosic materials as substrates for enzymatic conversion processes. Biotechnol. Bioeng. Symp. 6, 95-123
  4. Ferraz, A., A.M. Cordova, and A. Machuca. 2003. Wood biodegradation and enzyme production by Ceriporiopsis subvermispora during solid-state fermentation of Eucalyptus grandis. Enzyme Microb. Technol. 32, 59-65 https://doi.org/10.1016/S0141-0229(02)00267-3
  5. Ferraz, A., R. Mendonca, and F.T. Silva. 2000. Organosolv delignification of white-and brown-rotted Eucalyptus grandis hardwood. J. Chem. Technol. Biotechnol. 75, 18-24 https://doi.org/10.1002/(SICI)1097-4660(200001)75:1<18::AID-JCTB169>3.0.CO;2-Z
  6. Ferraz, A., J. Rodriguez, J. Freer, and J. Baeza. 2001. Biodegradation of Pinus radiata soft wood by white- and brown-rot fungi. World J. Microbiol. Biotechnol. 17, 31-34 https://doi.org/10.1023/A:1016646802812
  7. Guedon, E., M. Desvaux, and H. Petitdemange. 2002. Improvement of cellulolytic properties of Clostridium cellulolyticum by metabolic engineering. Appl. Environ. Microbiol. 68, 53-58 https://doi.org/10.1128/AEM.68.1.53-58.2002
  8. Guerra, A., R. Mendonca, and A. Ferraz. 2003. Molecular weight distribution of wood components extracted from Pinus taeda biotreated by Ceriporiopsis subvermispora. Enzyme Microb. Technol. 33, 12-18 https://doi.org/10.1016/S0141-0229(03)00099-1
  9. Itoh, H., M. Wada, Y. Honda, M. Kuwahara, and T. Watanabe. 2003. Bioorganosolve pretreatments for simultaneous saccharification and fermentation of beech wood by ethanolysis and white rot fungi. J. Biotechnol. 103, 273-280 https://doi.org/10.1016/S0168-1656(03)00123-8
  10. Kawai, R., M. Yoshida, T. Tani, K. Igarashi, T. Ohira, H. Nagasawa, and M. Samejima. 2003. Production and characterization of recombinant Phanerochaete chrysosporium $\beta$-glucosidase in the mthylotrophic yeast Picha pastoris. Biosci. Biotechnol. Biochem. 67, 1-7 https://doi.org/10.1271/bbb.67.1
  11. Kirk, T.K., S. Croan, M. Tien, K.E. Murtagh, and R.L. Farrell. 1986. Production of multiple ligninases by Phanerochaete chrysosporium: effect of selected growth condition and use of a mutant strain. Enzyme Microb. Technol. 8, 27-32 https://doi.org/10.1016/0141-0229(86)90006-2
  12. Klinke, H.B., L. Olssomn, A.B. Thomsen, and B.K. Ahring. 2003. Potential inhibitors from wet oxidation of wheat straw and their effect on ethanol production of Saccharomyces cerevisiae: wet oxidation and fermentation by yeast. Biotechnol. Bioeng. 81, 738-747 https://doi.org/10.1002/bit.10523
  13. Lee, C.C., D.W.S. Wong, and G.H. Robertson. 2005a. Cloning and characterization of the Xyn11A gene from Lentinula edodes. Protein J. 24, 21-26 https://doi.org/10.1007/s10930-004-0602-0
  14. Lee, S.M., B.W. Koo, J.W. Choi, D.H. Choi, B.S An, E.B. Jeung, and I.G. Choi. 2005b. Degradation of bisphenol A by white rot fungi, Stereum hirsutum and Heterobasidium insulare, and reduction of its estrogenic activity. Bio. Pharm. Bull. 28, 201-207 https://doi.org/10.1248/bpb.28.201
  15. Lee, J.W., S.M. Lee, E.J. Hong, E.B. Jeung, H.Y. Kang, M.K. Kim, and I.G. Choi. 2006. Estrogenic reduction of styrene monomer degraded by Phanerochaete chrysosporium KFRI 20724. J. Microbiol. 44, 177-184
  16. Lee, S.M., J.W. Lee, B.W. Koo, M.K. Kim, D.H. Choi, and I.G. Choi. 2007. Dibutyl phthalate biodegradation by the white rot fungus, Polyporus brumalis. Biotechnol. Bioeng. 97, 1516-1522 https://doi.org/10.1002/bit.21333
  17. Lee, Y.H. and L. Fan. 1982. Kinetic studies of enzymatic hydrolysis of insoluble cellulose: analysis of the initial rates. Biotechnol. Bioeng. 24, 2383-2406 https://doi.org/10.1002/bit.260241107
  18. Machuca, A. and A. Ferraz. 2001. Hydrolytic and oxidative enzymes produced by white- and brown-rot fungi during Eucalyptus grandis decay in solid medium. Enzyme Microb. Technol. 29, 386-391 https://doi.org/10.1016/S0141-0229(01)00417-3
  19. Matsumura, Y., M. Sasaki, K. Okuda, S. Takami, S. Ohara, M. Umetsu, and T. Adschiri. 2005. Supercritical water treatment of biomass for energy and material recovery. Combust. Sci. Tech. 178, 509-536 https://doi.org/10.1080/00102200500290815
  20. Nakamura, Y., T. Sawada, and E. Inoue. 2001. Enhanced ethanol production from enzymatic treated steam exploded rice straw using extractive fermentation. J. Chem. Tech. Biotechnol. 76, 879-884 https://doi.org/10.1002/jctb.465
  21. Okano, K., M. Kitagaw, Y. Sasaki, and T. Watanabe. 2005. Conversion of Japanese red ceder (Cryptomeria japonica) into a feed for ruminants by white-rot basidiomycetes. Animal Feed Sci. Technol. 120, 235-243 https://doi.org/10.1016/j.anifeedsci.2005.02.023
  22. Palmqvist, E., H. Grage, N.Q. Meinander, and B. Hahn-Hagderdal. 1999. Main and interaction effects of acetic acid, furfural, and p-hydroxybenzoic acid on growth and ethanol productivity of yeasts. Biotechnol. Bioeng. 63, 46-55 https://doi.org/10.1002/(SICI)1097-0290(19990405)63:1<46::AID-BIT5>3.0.CO;2-J
  23. Pan, X., C. Arato, N. Gilkes, D. Gregg, W. Mabee, K. Pye, Z. Xiao, X. Zhang, and J. Saddler. 2005. Biorefining of softwoods using ethanol olganosolve pulping: reliminary evaluation of process streams for manufacture of fuel-grade ethanol and co-products. Biotechnol. Bioeng. 90, 473-481 https://doi.org/10.1002/bit.20453
  24. Ruttimann, J.C., L. Salas, R. Vicuna, and T.K. Kirk. 1993. Extracellular enzyme-production and synthetic lignin mineralization by Ceriporiopsis subvermispora. Appl. Environ. Microbiol. 59, 1792-1797
  25. Sasaki, M., B. Kabyemela, R. Malaluan, S. Hirose, N. Takeda, T. Adschiri, and K. Arai. 1998. Cellulose hydrolysis in subcritical and supercritical water. J. Supercrit. Fluids 13, 261-268 https://doi.org/10.1016/S0896-8446(98)00060-6
  26. Segal, L., J.J. Creely, A.E. Martin, Jr, and C.M. Conrad. 1959. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractomerter. Text. Res. J. 786-794
  27. Sethuraman, A., D.E. Akin, and K.E.L. Eriksson. 1998. Plant-cellwall- degrading enzymes produced by the white-rot fungus Ceriporiopsis subvermispora. Biotechnol. Appl. Biochem. 27, 37-47 https://doi.org/10.1111/j.1470-8744.1998.tb01373.x
  28. Shin, K.S. and Y.J. Lee. 2000. Purification and characterization of a new member of the laccase family from the white-rot basidiomycete Coriolus hirsutus. Arch. Biochem. Biophys. 384, 109-115 https://doi.org/10.1006/abbi.2000.2083
  29. Soderstrom, J., L. Pilcher, M. Galbe, and G. Zacchi. 2003. Twostep steam pretreatment of softwood by dilute $H_2SO_4$ impregnation for ethanol production. Biomass Bioenergy 24, 475-486 https://doi.org/10.1016/S0961-9534(02)00148-4
  30. Srebotnik, E., K.A. Jensen, and K.E. Hammel. 1994. Fungal degradation of recalcitrant nonphenolic lignin structures without lignin peroxidase. Proc. Natl. Acad. Sci. USA 91, 4222-4231
  31. Stone, J.E. and A.M. Scallen. 1968. A structure model for the cell wall of water-swollen wood pulp fibers based on their accessibility to macromolecules. Cellulose Chem. Technol. 2, 343-358
  32. Sun, Y. and J. Cheng. 2002. Hydrolysis of lignocellulosic materials for ethanol production: review. Bioresour. Technol. 83, 1-11 https://doi.org/10.1016/S0960-8524(01)00212-7
  33. Thompson, D.N. and H.C. Chen. 1992. Comparison of pretreatment methods on the basic of available surface area. Bioresour. Technol. 39, 155-163 https://doi.org/10.1016/0960-8524(92)90135-K
  34. Woodward, J. 1991. Synergism in cellulose systems. Bioresour. Technol. 36, 67-75 https://doi.org/10.1016/0960-8524(91)90100-X
  35. Yang, B., A. Boussaid, S.D. Mansfield, D.J. Gregg, and J.N. Saddler. 2002. Fast and efficient alkaline peroxide treatment to enhance the enzymatic digestibility of stream-exploded softwood substrate. Biotechnol. Bioeng. 76, 678-684
  36. Yeo, S., N. Park, H.G. Song, and H.T. Choi. 2007. Generation of a transformant showing higher manganese peroxidase (Mnp) activity by overexpression of Mnp Gene in Trametes versicolor. J. Microbiol. 45, 213-218