DOI QR코드

DOI QR Code

CATACLYSMIC VARIABLES : SOURCES OF STOCHASTIC GRAVITATIONAL WAVE BACKGROUND

격변 변광성 : 확률적 중력파동배경의 샘

  • Published : 2007.12.31

Abstract

On the framework of stochastic gravitational wave background(SGWB) by compact binary systems, we studied the strain spectra of SGWB produced by cosmological cataclysmic variables(CV). For this we reviewed the empirical properties of CVs by using newly published CV catalogue and calculated the cosmological densities of CVs considering the galaxy luminosity function and cosmic stellar birth rate function. Assuming the secular evolution of CVs, we calculated the time scale of CV gravitational wave(GW) radiation and derived formulae for the strain spectra of SGWB by cosmological CVs.

Keywords

References

  1. Allen, B., 1996, The stochastic gravity-wave background: sources and detection, gr-qc/9604033
  2. Cole, S. et al., 2001, The 2dF galaxy redshift survey: near-infrared galaxy luminosity functions, MNRAS, 326, 255
  3. Coward, D. M., Burman, R. R., & Blair, D. G., 2001, The stochastic background of gravitational waves from neutron star formation at cosmological distances, MNRAS, 324, 1015 https://doi.org/10.1046/j.1365-8711.2001.04378.x
  4. de Araujo, J. C. N., Miranda, O. D., & Aquiar, O. D., 2000, Stochastic background of gravitational waves, astro- ph/0004395
  5. Drory, N., et al., 2003, The Munich Near-Infrared Cluster Survey. II. The K-Band Luminosity Function of Field Galaxies to z 1.2, ApJ, 595, 698 https://doi.org/10.1086/377497
  6. Enoki, M., Inoue, K. T., Nagashima, M. & Sugiyama, N., 2004, Gravitational Waves from Supermassive Black Hole Coalescence in a Hierarchical Galaxy Formation Model, astro-ph/0404389
  7. Enoki, M. & Nagashima, M., 2006, GravitationalWaves from Supermassive Black Hole Coalescence in a Hierarchical Galaxy Formation Model , astro-ph/0609377
  8. Farmer, A. J. & Phinney, E. S., 2003, The Gravitational Wave Background from Cosmological Compact Binaries, astro-ph/0304393
  9. Faulkner, J., 1971, Ultrashort-Period Binaries, Gravitational Radiation, and Mass Transfer. I. The Standard Model, with Applications to WZ Sagittae and Z Camelopardalis, ApJ, 170, L99
  10. Hils, D., Bender, P. L. & Webbink, R. F., 1990, Gravitational radiation from the Galaxy, ApJ, 360, 75 https://doi.org/10.1086/169098
  11. Howell, S. B., Nelson, L. A., & Rappaport, S., 2001, An Exploration of the Paradigm for the 2-3 Hour Period Gap in Cataclysmic Variables, ApJ, 550, 897
  12. Hurley, J. R., Tout, C. A., & Pols, O. R., 2002, Evolution of binary stars and the effect of tides on binary populations, MNRAS, 329, 897 https://doi.org/10.1046/j.1365-8711.2002.05038.x
  13. Kolb, U., King, A. R., & Ritter, H., 1998, The cataclysmic variable period gap: still there, MNRAS, 298, L29 https://doi.org/10.1046/j.1365-8711.1998.01854.x
  14. Landau, L. & Lifshitz, E., The Classical Theory of Fields, Addison-Wesley Pub. Co. (1951)
  15. Maggiore, M., 2000, Gravitational Wave Experiments and Early Universe Cosmology, gr-qc/9909001
  16. Meliani, M. T., de Araujo, J. C. N., & Aguiar, O. D., 2000, Cataclysmic variables as sources of gravitational waves, A&A, 358, 417
  17. Mennickent, R. E., Matsumoto, K., & Arenas, J., 1999, The orbital period of the dwarf nova HS Virginis, the revised Po-Ps relation and the 'superhump' mass ratio distribution of SU UMa stars , A&A, 348, 466
  18. MTW: Misner, C. W., Thorne, K. S., & Wheeler, J. A., 1973, Gravitation, Freeman, San Francisco
  19. Paczynski, B., 1967, Evolution of Close Binaries. II., Acta Astronomica, 17, 1
  20. Patterson, J., 1984, The evolution of cataclysmic and low-mass X-ray binaries, ApJS, 54, 443
  21. Patterson, J., 1988, Late Evolution of Cataclysmic Variables, PASP, 110, 1132 https://doi.org/10.1086/316233
  22. Peters, P. C. & Mathews, J., 1963, Gravitational Radiation from Point Masses in a Keplerian Orbit, PhRv, 131, 435
  23. Phinney, E. S., 2001, A Practical Theorem on Gravitational Wave Backgrounds, astro-ph/0108028
  24. Politano, M., 1996, Theoretical Statistics of Zero-Age Cataclysmic Variables, ApJ, 465, 338
  25. Rappaport, S., Verbunt, F., & Joss, P. C., 1983, A new technique for calculations of binary stellar evolution, with application to magnetic braking, ApJ, 275, 713 https://doi.org/10.1086/161569
  26. Ritter, H. & Burkett, A., 1986, The mass spectrum of the white dwarfs in cataclysmic binaries, A&A, 158, 161
  27. Ritter, H. & Kolb, U., 2003, Catalogue of cataclysmic binaries, low-mass X-ray binaries and related objects (Seventh edition), A&A, 404, 301 https://doi.org/10.1051/0004-6361:20030330
  28. Schatzman, E., 1962, A theory of the role of magnetic activity during star formation, AnAp, 25, 18
  29. Schechter, P., 1976, An analytic expression for the luminosity function for galaxies., ApJ, 203, 297 https://doi.org/10.1086/154079
  30. Shara, M. et al., 2007, An ancient nova shell around the dwarf nova Z Camelopardalis, Nature, 446, 159 https://doi.org/10.1038/nature05576
  31. Smith, D. A. & Dhillon, V. S., 1998, The secondary stars in cataclysmic variables and low-mass X-ray binaries, MNRAS, 301, 767
  32. Thorne, K. S., 1987, in Three Hundred Years of Gravitation, Cambridge University Press
  33. Verbunt, F. & Zwaan, C., 1981, Magnetic braking in low-mass X-ray binaries, A&A, 100, L7
  34. Yungelson, L., Livio, M., & Tutkov, A., 1997, On the Rate of Novae in Galaxies of Different Types, ApJ, 481, 127 https://doi.org/10.1086/304020