An Improved Object Detection Method using Hausdorff Distance Modified by Local Pattern Similarity

국지적 패턴 유사도에 의해 수정된 Hausdorff 거리를 이용한 개선된 객체검출

  • 조경식 (단국대학교 정보컴퓨터학부) ;
  • 구자영 (단국대학교 정보컴퓨터학부)
  • Published : 2007.12.31

Abstract

Face detection is a crucial part of the face recognition system. It determines the performance of the whole recognition system. Hausdorff distance metric has been used in face detection and recognition with good results. It defines the distance metric based only on the geometric similarity between two sets or points. However, not only the geometry but also the local patterns around the points are available in most cases. In this paper a new Hausdorff distance measure is proposed that makes hybrid use of the similarity of the geometry and the local patterns around the points. Several experiments shows that the new method outperforms the conventional method.

디지털 영상에서의 얼굴탐색은 얼굴인식을 위한 기본 단계이면서 인식 성능에 큰 영향을 미치는 중요한 처리 단계이다. 템플릿 정합 방식의 객체 검출방식에서 사용되어 얼굴 인식 등에서 좋은 성능을 보이는 Hausdorff 거리는 주어진 점의 집합들 사이에서 기하학적 유사도만을 고려한 측도이므로 원래의 영상이 포함하고 있는 다른 정보들을 추가적으로 이용함으로 효율을 높일 수 있다. 이러한 점에 착안하여 본 논문에서는 점들 사이에 서로 다른 정도를 측정하기 위해서 거리뿐만 아니라 점들 주위의 국지적 계조패턴 정보까지 포함하는 측도를 정의함으로써 보다 정밀한 템플릿 정합결과를 얻는 방법을 제안한다.

Keywords