DOI QR코드

DOI QR Code

Enhancement of Ca2+ Current Does Not Regulate the Speed of Depolarization-induced Ca2+ Propagation Wave in Rat Atrial Myocytes

  • Woo, Sun-Hee (College of Pharmacy, Chungnam National University) ;
  • Hwang, Seon-Hwa (College of Pharmacy, Chungnam National University) ;
  • Kim, Joon-Chul (College of Pharmacy, Chungnam National University) ;
  • Morad, Martin (Department of Pharmacology, School of Medicine, Georgetown University)
  • Published : 2007.12.31

Abstract

In atrial myocytes, lacking t-tubules, $Ca^{2+}$ current ($I_{Ca}$)-initiated $Ca^{2+}$ release at the peripheral junctional sites propagates into the interior of the cell by diffusion of $Ca^{2+}$. We have previously reported that time of activation of the central sites is independent of $I_{Ca}$. In the present study we have probed the effects of Bay K 8644 on $Ca^{2+}$ propagation wave to the center of the myocyte using rapid 2-D confocal $Ca^{2+}$ imaging in the rat atrial myocytes. Enhancement of $I_{Ca}$ by Bay K 8644 accelerated the rate of peripheral $Ca^{2+}$ release, but did not affect the speed of propagation of central release. In contrast, enhancement of $I_{Ca}$ by intracellular cAMP reduced the magnitude of peripheral and central $Ca^{2+}$ transients, but significantly accelerated the speed of central $Ca^{2+}$ release. Our data suggest that the speed of central $Ca^{2+}$ propagation triggered by $I_{Ca}$ is not regulated by the magnitude of either $I_{Ca}$ or local cytosolic $Ca^{2+}$ releases.

Keywords

References

  1. Adachi-Akahane, S., Cleemann, L. and Morad, M. (1996). Crosssignaling between L-type $Ca^{2+}$ channels and ryanodine receptors in rat ventricular myocytes. J. Gen. Physiol. 108, 435-454 https://doi.org/10.1085/jgp.108.5.435
  2. Adachi-Akahane, S., Cleemann, L. and Morad M. (1999). Bay K 8644 modifies $Ca^{2+}$ cross signaling between DHP and ryanodine receptors in rat ventricular myocytes. Am. J. Physiol. 276, H1178-H1189
  3. Berlin, J. R. (1995). Spatiotemporal changes of $Ca^{2+}$ during electrically evoked contractions in atrial and ventricular cells. Am. J. Physiol. 267, H1165-H1170
  4. Beuckelmann, D. J. and Wier, W. G. (1988). Mechanism of release of calcium from sarcoplasmic reticulum of guinea-pig cardiac cell. J. Physiol. 405, 233-255 https://doi.org/10.1113/jphysiol.1988.sp017331
  5. Blatter, L. A., Kockskamper, J., Sheehan, K. A., Zima, A. V., Huser, J. and Lipsius, S. L. (2003). Local calcium gradients during excitation-contraction coupling and alternans in atrial myocytes. J. Physiol. 546, 19-31 https://doi.org/10.1113/jphysiol.2002.025239
  6. Callewaert, G., Cleemann, L. and Morad, M. (1988). Epinephrine enhances $Ca^{2+}$ current-regulated $Ca^{2+}$ release and $Ca^{2+}$ reuptake in rat ventricular myocytes. Proc. Natl. Acad. Sci. 85, 2009- 2012 https://doi.org/10.1073/pnas.85.6.2009
  7. Carl, S. L., Felix, K., Caswell, A. H., Brandt, N. R., Ball, W. J., Vaghy, P. L., Meissner, G. and Ferguson, D. G. (1995). Lolocalization of sarcolemmal dihydropyridine receptor and sarcoplasmic reticular tridin and ryanodine receptor in rabbit ventricle and atrium. J. Cell. Biol. 129, 673-682 https://doi.org/10.1083/jcb.129.3.673
  8. Cleemann, L. and Morad, M. (1991). Role of $Ca^{2+}$ channel in cardiac excitation-contraction coupling in the rat: evidence from $Ca^{2+}$ transients and contraction. J. Physiol. 432, 283-312 https://doi.org/10.1113/jphysiol.1991.sp018385
  9. Colyer, J. (1993). Control of the calcium pump of cardiac sarcoplasmic reticulum. A specific role for the pentameric structure of phospholamban? Cardiovasc. Res. 27, 1766-1771 https://doi.org/10.1093/cvr/27.10.1766
  10. Hamil, O. P., Marty, A., Neher, E., Sakmann, B. and Sigworth, F. J. (1981). Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers. Arch. 391, 85-100 https://doi.org/10.1007/BF00656997
  11. Hatem, S. N., Benardeau, A., Rucker-Martin, C., Marty, I., Chamisso, P., Villaz, M. and Mercardier. J. J. (1997). Different compartments of sarcoplasmic reticulum participate in the excitation-contraction coupling process in human atrial myocytes. Circ. Res. 80, 345-353 https://doi.org/10.1161/01.RES.80.3.345
  12. Hess, P., Lansman, J. B. and Tsien, R. W. (1984). Differential modes of $Ca^{2+}$ channel gating behavior favoured by dihydropyridine $Ca^{2+}$ agonists and antagonists. Nature. 311, 538-544 https://doi.org/10.1038/311538a0
  13. Huser, J., Lipsius, S. L. and Blatter, L. A. (1996). Calcium gradients during excitation-contraction coupling in cat atrial myocytes. J. Physiol. 494, 641-651
  14. Kass, R. S. (1987). Voltage-dependent modulation of cardiac calcium channel current by optical isomers of Bay K 8644: implications for channel gating. Circ. Res. 61, I1-I5
  15. Kockskamper, J., Sheehan, K. A., Bare, D. J., Lipsius, S. L., Mignery, G. A. and Blatter, L. A. (2001). Activation and propagation of $Ca^{2+}$ release during excitation-contraction coupling in atrial myocytes. Biophys. J. 81, 2590-2605 https://doi.org/10.1016/S0006-3495(01)75903-6
  16. Lipp, P., Hüser, J., Pott, L. and Niggli, E. (1996). Subcellular properties of triggered $Ca^{2+}$ waves in isolated citrate-loaded guinea-pig atrial myocytes characterized by ratiometric confocal microscopy. J. Physiol. 497, 599-610 https://doi.org/10.1113/jphysiol.1996.sp021793
  17. Mackenzie, L., Bootman, M. D., Berridge, M. J. and Lipp, P. (2001). Predetermined recruitment of calcium release sites underlies excitation-contraction coupling in rat atrial myocytes. J. Physiol. 530, 417-429 https://doi.org/10.1111/j.1469-7793.2001.0417k.x
  18. Marx, S. O., Reiken, S., Hisamatsu, Y., Jayaraman, T., Burkhoff, D., Rosembilt, N. and Marks A. R. (2000). PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. Cell. 101, 365-376 https://doi.org/10.1016/S0092-8674(00)80847-8
  19. Morad, M., Sanders, C. and Weiss, J. (1981). The inotropic actions of adrenaline on frog ventricular muscle: relaxing versus potentiating effects. J. Physiol. 311, 585-604 https://doi.org/10.1113/jphysiol.1981.sp013606
  20. N${\'{a}}$bauer, M., Callewaert, G., Cleemann, L. and Morad, M. (1989). Regulation of calcium release is gated by calcium current, not gating charge, in cardiac myocytes. Science. 244, 800-803 https://doi.org/10.1126/science.2543067
  21. Niggli, E. and Lederer, W. J. (1990). Voltage-independent calcium release in heart muscle. Science. 250, 565-568 https://doi.org/10.1126/science.2173135
  22. Satoh, H., Katoh, H., Velez, P., Fill, M. and Bers, D. M. (1998). Bay K 8644 increases resting $Ca^{2+}$ spark frequency in ferret ventricular myocytes independent of $Ca^{2+}$ influx. Circ. Res. 83, 1192-1204 https://doi.org/10.1161/01.RES.83.12.1192
  23. Sham, J. S., Jones, L. R. and Morad, M. (1991). Phospholamban mediates the beta-adrenergic-enhanced $Ca^{2+}$ uptake in mammalian ventricular myocytes. Am. J. Physiol. 261, H1344- H1349
  24. Sham, J. S. K., Cleemann, L. and Morad, M. (1995). Functional coupling of $Ca^{2+}$ channels and ryanodine receptors in cardiac myocytes. Proc. Natl. Acad. Sci. 92, 121-125 https://doi.org/10.1073/pnas.92.1.121
  25. Sheehan, K. A. and Blatter, L. A. (2003). Regulation of junctional and non-junctional sarcoplasmic reticulum calcium release in excitation-contraction coupling in cat atrial myocytes. J. Physiol. 546, 119-135 https://doi.org/10.1113/jphysiol.2002.026963
  26. Sommer, J. R. and Jennings, R. B. (1992). Ultrastructure of cardiac muscle. In The Heart and Cardiovascular System, ed. Fozzard, H.A., Harbor, E., Jennings, R.B., Katz, A.M. & Morgan, H.E., pp. 3-50. Ravan Press, New York
  27. Sun, X. H., Protasi, F., Takahashi, M., Fregusson, D. G. and Franzini- Amstrong, C. (1995). Molecular architecture of membrane involved in excitation-contraction coupling of cardiac muscle. J. Cell. Biol. 129, 659-671 https://doi.org/10.1083/jcb.129.3.659
  28. Tanaka, H., Masumiya, H., Sekine, T., Kase, J., Kawanishi, T., Hayakawa, T., Miyata, S., Sato, Y., Nakamura, R. and Shigenobu K (2001). Involvement of $Ca^{2+}$ waves in excitationcontraction coupling of rat atrial myocytes. Life. Sci. 70, 715- 726 https://doi.org/10.1016/S0024-3205(01)01436-9
  29. Woo, S. H., Cleemann, L. and Morad, M. (2002). $Ca^{2+}$ currentgated focal and local $Ca^{2+}$ release in rat atrial myocytes: evidence from rapid 2-D confocal imaging. J. Physiol. 543, 439- 453 https://doi.org/10.1113/jphysiol.2002.024190