Journal of Internet Computing and Services (인터넷정보학회논문지)
- Volume 8 Issue 6
- /
- Pages.95-102
- /
- 2007
- /
- 1598-0170(pISSN)
- /
- 2287-1136(eISSN)
The Effect of Data Sparsity on Prediction Accuracy in Recommender System
추천시스템의 희소성이 예측 정확도에 미치는 영향에 관한 연구
Abstract
Recommender System based on the Collaborative Filtering has a problem of trust of the prediction accuracy because of its problem of sparsity. If the sparsity of a preference value is large, it causes a problem on a process of a choice of neighbors and also lowers the prediction accuracy. In this article, a change of MAE based on the sparsity is studied, groups are classified by sparsity and then, the significant difference among MAEs of classified groups is analyzed. To improve the accuracy of prediction among groups by the problem of sparsity, We studied the improvement of an accurate prediction for recommending system through reducing sparsity by sorting sparsity items, and replacing the average preference among them that has a lot of respondents with the preference evaluation value.
협력적 필터링을 이용한 추천시스템은 희소성의 문제로 인해 예측의 정확도에 대한 신뢰성에 문제가 있다. 이는 선호도 평가치의 희소성이 크면 이웃선정과정에 문제가 있을 뿐만 아니라 예측의 정확도를 떨어뜨린다. 본 논문에서는 사용자의 응답 희소성에 따른 MAE의 변화를 조사하였으며 희소성에 따라 집단을 분류하고 분류된 집단에 따른 MAE는 유의적인 차이가 있는 지를 분석하였다. 그리고 희소성 문제로 인한 집단 간의 예측 정확도를 높이기 위한 방법으로 희소성이 있는 아이템을 선별하여 이들 중에서 선호도 응답이 많은 사용자 고객의 선호도 평균값을 선호도 평가 치로 대치시켜 희소성을 완화하여 추천시스템의 예측 정확도가 높아졌음을 연구하였다.