References
- DePriest, D. J. (1983). Using the singly truncated normal distribution to analyze satellite data. Communications in Statistics-Theory and Methods, 12, 263-272 https://doi.org/10.1080/03610928308828456
- Genton, M. G. (2005). Discussion of 'the skew-normal'. Scandinavian Journal of Statistics, 32, 189-198 https://doi.org/10.1111/j.1467-9469.2005.00427.x
- Hall, R. L. (1979). Inverse moments for a class of truncated normal distributions. Sankhya, Ser. B, 41, 66-76
- Jawitz, J. W. (2004). Moments of truncated continuous univariate distributions. Advances in Water Resources, 27, 269-281 https://doi.org/10.1016/j.advwatres.2003.12.002
- Johnson, N. L., Kotz, S. and Balakrishnan, N. (1994). Continuous Univariate Distributions, Vol. 1, 2ne ed., John Wiley & Sons, New York
- Kim, H. J. (2007). Moments of truncated Student-t distribution. Journal of the Korean Statistical Society, accepted https://doi.org/10.1016/j.jkss.2007.06.001
- Shah, S. M. (1966). On estimating the parameter of a doubly truncated binomial distribution. Journal of the American Statistical Association, 61, 259-263 https://doi.org/10.2307/2283061
- Shah, S. M. and Jaiswal, M. C. (1966). Estimation of parameters of doubly truncated normal distribution from first four sample moments. Annals of the Institute of Statistical Mathematics, 18, 107-111 https://doi.org/10.1007/BF02869520
- Sugiura, N. and Gomi, A. (1985). Pearson diagrams for truncated normal and truncated Weibull distributions. Biometrika 72, 219-222 https://doi.org/10.1093/biomet/72.1.219
Cited by
- A class of weighted multivariate elliptical models useful for robust analysis of nonnormal and bimodal data vol.39, pp.1, 2010, https://doi.org/10.1016/j.jkss.2009.04.006