DOI QR코드

DOI QR Code

Modelling on Multi-modal Circular Data using von Mises Mixture Distribution

  • Jang, Young-Mi (Korea Center for Disease Control & Prevention) ;
  • Yang, Dong-Yoon (Korea Institute of Geoscience & Mineral Resources) ;
  • Lee, Jin-Young (Korea Institute of Geoscience & Mineral Resources) ;
  • Na, Jong-Hwa (Department of Information & Statistics, Chungbuk National University)
  • Published : 2007.12.31

Abstract

We studied a modelling process for unimodal and multimodal circular data by using von Mises and its mixture distribution. In particular we suggested EM algorithm to find ML estimates of the mixture model. Simulation results showed the suggested methods are very accurate. Applications to two kinds of real data sets are also included.

Keywords

References

  1. Batschelet, E. (1981). Circular Statistics in Biology, Academic Press, London
  2. Do, K. and McLanchlan, G. J. (1984). Estimation of mixing proportions: a case study. Applied Statistics, 33, 134-140 https://doi.org/10.2307/2347437
  3. Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Ser. B, 39, 1-38
  4. Everitt, B. S. (1984). Maximum likelihood estimation of the parameters in a mixture of two univariate normal distributions; a comparison of different algorithms. The Statistician, 33, 205-215 https://doi.org/10.2307/2987851
  5. Fisher, N. I. (1993). Statistical Analysis of Circular Data. Cambridge University Press, New York
  6. Jammalamadaka, S. R. and SenGupta, A. (2001). Topics in Circular Statistics. World Scientific, NJ
  7. Jammalamadaka, S. R. and Kozubowski, T. J. (2003). A new family of circular models: the wrapped laplace distributions. Advances and Application in Statistics, 3, 77-103
  8. Jones, M. C. and James, W. R. (1972). Analysis of bimodal orientation data. Mathematical Geology, 1, 129-135 https://doi.org/10.1007/BF02048557
  9. Mardia, K. V. (1972). Statistics of Directional Data. Academic Press, New York
  10. Mardia, K. V. and Jupp, P. E. (1999). Directional Statistics. John Wiley & Sons, New York
  11. Mardia, K. V. and Sutton, T. W. (1975). On the modes of a mixture of two von Mises distributions. Biometrika, 62, 699-701 https://doi.org/10.1093/biomet/62.3.699
  12. McLachlan, G. J. and Krishnan, T. (1997). The EM Algorithm and Extensions. 2nd ed., John Wiley & Sons, New York
  13. Pewsey, A. (2000). The wrapped skew-normal distribution on the circle. Communications in Statistics: Theory and Methods, 29, 2459-2472 https://doi.org/10.1080/03610920008832616
  14. Pewsey, A. (2006). Modelling asymmetrically distributed circular data using the wrapped skew-normal distribution. Enviromental and Ecological Statistics, 13, 257-269 https://doi.org/10.1007/s10651-005-0010-4
  15. Tanner, M. A. (1996). Tools for Statistical Inference: : Methods for the Exploration of Posterior Distributions and Likelihood Functions. Springer-Verlag, New York
  16. Titterington, D. M., Smith, A. F. M. and Makov, U. E. (1985). Statistical Analysis of Finite Mixture Distributions. John Wiley & Sons, Chichester

Cited by

  1. Modeling Circular Data with Uniformly Dispersed Noise vol.25, pp.4, 2012, https://doi.org/10.5351/KJAS.2012.25.4.651
  2. Modeling on Daily Traffic Volume of Local State Road Using Circular Mixture Distributions vol.24, pp.3, 2011, https://doi.org/10.5351/KJAS.2011.24.3.547