Abstract
In a general fractional factorial design, the n-levels of a factor are coded by the $n^{th}$ roots of the unity. Pistone and Rogantin (2007) gave a full generalization to mixed-level designs of the theory of the polynomial indicator function using this device. This article discusses the optimal blocking scheme for nonregular designs. According to hierarchical principle, the minimum aberration (MA) has been used as an important criterion for selecting blocked regular fractional factorial designs. MA criterion is mainly based on the defining contrast groups, which only exist for regular designs but not for nonregular designs. Recently, Cheng et al. (2004) adapted the generalized (G)-MA criterion discussed by Tang and Deng (1999) in studying $2^p$ optimal blocking scheme for nonregular factorial designs. The approach is based on the method of replacement by assigning $2^p$ blocks the distinct level combinations in the column with different blocks. However, when blocking level is not a power of two, we have no clue yet in any sense. As an example, suppose we experiment during 3 days for 12-run Plackett-Burman design. How can we arrange the 12-runs into the three blocks? To solve the problem, we apply G-MA criterion to nonregular mixed-level blocked scheme via the mixed-level indicator function and give an answer for the question.