Ho] z2 ool A% A vjAE T FF AT
SQL A9 =218 435 FHo=
YU E -Gy En

An Experimental Study on Effects of Pair Programming on Task
Performance : Focus on SQL Query Programming Performance

Seong No Yoon™ - Jongheon Kim* - Sang-hyun Park™

Abstract

In recent vyears, pair programming has become a widely used approach for development of
information systems. According to a worldwide survey, 35 percent of 104 development projects reported
using pair programming. However, previous Studies have shown rather mixed resuits in terms of the
effectiveness of pair programming, comparing to individual or independent programming. This paper,
therefore, uses a lab setting to control some of the variables that appear to have caused conflicting
results in earlier studies. Writing SQL queries for given problem statements is selected as the task the
subjects to solve. One key issue addressed is the distribution of work load among the pair pro-
grammers and the independent programmers. Another is communication among co-workers as would
occur in a real-world system development environment. The results of this study indicate there is no
significant difference in task performance pair programming and independent programming.

Keywords : Pair Programming, Extreme Programming, Concurrency Metrics, User Perceptions of Pair
-Programming

=234g : 20074 082 24Y =2AREEY : 20074 108 044
* University of Nebraska-Lincoln
™ RMAXA, SIRHEASTEY, (100-775) MEEYA| 27 2TS TTHX| NALY

18 JOURNAL OF INFORMATION TECHNOLOGY APPLICATIONS & MANAGEMENT

1. Introduction

Extreme Programming (XP) has gained much
attention among practitioners and researchers
since its successful application to a software
development effort at Chrysler [Anderson et
al., 1998; Beck, 2000; Jeffries et al., 2001]. The
Chrysler Comprehensive Compensation (C3)
project, originally launched in May 1997, was
declared a failure until the XP methodology
was introduced. The project restarted using
the XP methodology and was completed with
very successful results. In addition to Chrysler’s
C3 project, success stories regarding Web ap-
plications of XP have been reported in recent
years [Hieatt and Mee, 2002; Murru et al.,
2003].

XP is an agile programming methodology
based on the values of simplicity, communi-
cation, feedback, and courage. These values
are the basis for a number of basic principles
which include such things as embracing change,
encouraging quality work, and providing rapid
feedback [Kendall and Kendall, 2004]. XP is
an approach that balances key resources with
the need of coding, designing, testing and lis-
tening activities.

Pair programming is one of four core prac-
tices of XP and actually pairs two progra-
mmers for one task. They work together on
all aspects and phases of the programming
project including analysis, design, implemen-
tation, and testing. This approach is believed
to spark creativity, reduce errors, and save
time [Anderson et al, 1998, Jeffries et al.,
2001]. One person, the driver, writes code

while the other, the observer contributes to
designing effective algorithms or monitors for
errors. The roles of driver and observer are
usually switched at an appropriate point in
time. Compared to a long established practice
in which programmers work in isolation, pair
programming is a drastic change and an im-
portant topic attracting the attention of re-
searchers and practitioners of systems an-
alysis. Today pair programming extends its
application to even globally distributed soft-
ware teams and development practices con-
nected by the Internet or other high-speed
networks [Canfora et. al., 2006; Flor, 2006].
Many studies have identified benefits asso-
ciated with pair programming such as er-
ror-free code, greater confidence in work, and
high levels of enjoyment [Anderson et al.,
1998; Nosek, 1998; Williams et al., 2000]. Even
in educating computer science students, the
use of pair programming helps paired stu-
dents to improve tests and projects scores
equal to or better than solo students [Williams
et al., 2003; McDowell et al., 2006]. Based on
the findings, an educational institution exam-
ines the feasibility of pair programming as a
part of XP method in an attempt to develop a
new pedagogical framework for software de-
velopment methods [Dubinsky and Hazzan,
2005]. These positive effects may accelerate
the widespread use of pair programming in
development projects. More importantly, it is
found that productivity gain is greater in a
less experienced pair against a less experi-
ence solos than an experienced pair of pro-

grammers against a experienced solos [Lui

149 A4S

ol Taagele] AR HAd vlAE ¥ #F AT 19

and Chan, 2006}, which suggests how organ-
ize a project team to take the best advantage
of pair programming. According to a recent
worldwide survey, 35 percent of 104 develop-
ment projects reported using pair program-
ming [Chan et al., 1998].

Some studies, however, have found neg-
ative effects of pair programming [Hale et al.,
2000; Jeffries, 2001; Parrish et al., 2004; Smith
et al,, 2001]. Recent research showed that pair
programming actually wasted time and did
not provide any productivity impacts in an
industrial setting. Some even argue that wor-
king independently is more productive. These
observations inspired further research exam-
ining other factors that might influence pair
programming effectiveness such as ways to
pair programmers with different levels of ex~
pertise, problem complexity, and development
environment in a university setting.

The purpose of this study is to compare
the effectiveness of pair programming to in-
dependent programming under realistic sys—
tem development project like conditions where
all programmers are allowed to freely com-
municate with others. This paper is organized
as follows: Section 2 provides a review of
prior research and description of the research
model. Section 3 presents the experimental
design. Section 4 contains a discussion of the
research results. Conclusions are presented in
section 5. Finally, a task set and the Entity-
Relationship diagram used in this study are

presented in appendices.

2. Review of prior research

According to Kraut and Streeter [Kraut and
Streeter, 1995], a major cause of software cri-
ses, such as calendar or cost overruns, is the
problem of coordinating activities in large soft-
ware development projects. They defined co-
ordination as “individuals’ efforts toward ach-
ieving common explicitly recognized goals”
and “the integration or linking together of di-
fferent parts of an organization to accomplish
a collective set of tasks.” Researchers in soft-
ware engineering have identified many coor-
dination techniques to improve communication
efficiency or performance factors [Anderson
et al,, 1998; Williams and Kessler, 2000]. Kraut
and Streeter [1995] empirically found that in-
formal, interpersonal communication was a
valuable method of achieving coordination in
typical software projects. Cockburn [2000] re-
vealed that two paired developers at the
whiteboard achieved better performance in
communication efficiency than those using
e-mail, telephone, or videotape. Moreover, two
programmers working side by side on the
same problem [Williams et al., 2000] not only
produced quality software, but also felt more
confident and enjoyment related to their ef-
forts [Nosek, 1998; Williams et al., 2000].

Debates about the efficiency and effective-
ness of pair programming have revolved around
software developers and researchers [Jeffries,
2001; Nosek, 1998, Williams and Kessler, 2000].
Those who advocate pair programming argue
that pair programming enables developers to

improve the quality of software (i.e., error-free

20 JOURNAL OF INFORMATION TECHNOLOGY APPLICATIONS & MANAGEMENT

code) and decrease the overall development
time. Arisholm et al. [2007] further reveal that
pair programming practices are also desirable
even in performing maintenance tasks. This
yields an increase of productivity in system
maintenance as well as system development
projects. Furthermore, the members involved
in a team usually develop a higher level of
confidence in their solutions and a greater
sense of enjoyment through collaborative work
than independent programmers [Anderson et
al, 1998; Beck, 2000; Jeffries et al, 2001;
McCormick, 2001; Williams and Kessler, 2000].
Those who are skeptical of the value of pair
programming, however, argue that it wastes
time for people to work together on the same
algorithm or program, and programmers are
accustomed to writing code in isolation [Jeffries,
2001]. Industrial field studies found that the
more time team members spend concurrently
on the same code modules, the less produc-
tive they are. In other words, programmers
working independently tend to be more pro-
ductive [Hale et al., 2000; Parrish et al., 2004;
Smith et al., 2001].

Pair programming was proven to be effi-
cient, both empirically and anecdotally in the
C3 software development project [Anderson et
al. 1998) and in laboratory experiments using
students [Williams et al., 2000] or full-time
system programmers [Nosek, 1998; Arisholm
et al. 2007). Nosek [1988] conducted two ex-
periments using different subjects, students
and professionals. The subjects consisted of
15 full-time system engineers, with 5 persons
assigned to the control group and 5 pairs as-

signed to the experimental group. The sub-
jects in both groups were asked to code a
data integrity check using Sybase, which re-
quires very skilled engineers in C program-
ming to solve the problem. The results of the
experiment revealed that the pair-program-
ming group achieved higher quality of func-
tionality, more confidence, and a higher level
of enjoyment than the individual group. Some
criticize this experiment for not balancing
workload between the two groups. They ar-
gue that by assigning the same job to both
groups, members of the control group had to
do twice as much work as members of the
paired-group.

To eliminate the workload effect, Williams
and his colleagues [Williams et al., 2000] per-
formed a similar experiment, but with a bal-
anced workload between the groups. In this
experiment, 41 students participated : 13 sub-
jects were assigned to the control group and
28 students were paired for the experimental
group. In addition, unlike Nosek’s random as-
signment methods for the experiment group,
Williams et al., classified the students into
high, average, and low performers and created
teams with a mix of performance levels. This
assignment approach for the project team
might reflect the way software development
project teams are formed in practice. The re-
sults of this experiment were similar to Nosek's
: the paired-group showed superior results.

Having found that working independently is
more productive in a field study [Hale et al.,
2000; Smith et al., 2001; Parrish et al., 2004]
conducted an industrial field study to examine

A48 A4z

slol Zzagol A% st BlAE @] B A7 21

the productivity effects of pair programming,
introducing a concept of concurrency metrics.
The concurrency metric refers to the degree
to which different programmers report work-
ing on the same module during the same day.
Pair programmers exhibit very high concur-
rency, working collaboratively at the same
time on the same task. On the other hand, in
a low concurrency situation, team members
may work together but not on the same day.
Software development is a process of collabo-
ration where programmers do not work in to-
tal isolation without any opportunity to dis-
cuss with or seek help from colleagues. Gen-
erally, software development projects are cha-
racterized by low-concurrency. Their findings
showed that the high-concurrency teams are
dramatically less productive than the low-con-
currency teams. This result is completely op-
posite to the findings of previous studies.
What make their results opposite? Through
a careful analysis of the research, we recog-
nized there were differences in the level of
concurrency among groups (especially the con-
trol group). The studies that found positive
effects of pair programming tended to arrange
the control group in such a way that indi~
viduals were not allowed to communicate with
or seek help from others. However, in the in-
dustrial field study, individuals on a team were
allowed to talk to and get help from other
team members even if they were not formed
as pair programmers. In other words, they
were in a low-concurrency situation. We ar-
gue that the effects of pair programming will
vary depending on the level of concurrency

allowed for the control group.

The purpose of this study is to again com-
pare productivity and perceptional variables
between pair programmers and individual pro-
grammers, however the level of concurrency
was also considered an explanatory variable
in the experimental design and analysis. The
research model is presented in <Figure 1>.

Team characteristics
- Mix of high and low
performers Performance
criteria
Group o - Accuracy
characteristics \4 » | — Completion Time
- Individual group 3 "} Perception
- Pair programming criteria
group ~ Confidence
- Enjoyment
Task characteristics | |- Leaming

- Various degrees of
complexity

(Figure 1> Research model

3. Research methodology

A laboratory experiment was conducted to
determine the effects of pair programming on
project performance and participants’ percep-
tions of enjoyment, confidence, and learning.
Project performance was measured with ac—
curacy and task completion time. Perceptions
were measured with a questionnaire after the
experiment. Unlike earlier studies, members of
the control group (independent programmers)
were allowed communication with others in
the group. This established a low-concur—
rency situation and enabled the analysis of
differences in the outcome variables with re-

spect to level of concurrency. The experi-

22 JOURNAL OF INFORMATION TECHNOLOGY APPLICATIONS & MANAGEMENT

mental group experiences high—concurrency.

Another major difference of this experiment
is that the participants actually executed a
programming task, as opposed to only formu-
lating queries. This element is important be-
cause programming, usually involves const-
ruction of logic and writing and debugging
code [Chan et al., 1998]. We believe most co-
ordination problems and the need for help from
other team members usually involve the de-
bugging work. One computer loaded with the
Oracle client program (SQLPLUS 8.0) was as-
signed to each pair of the experiment group
and to each individual in the control group.
Finally, the output files for each group were
saved in a network drive for future data an-
alysis.

3.1 Subjects

Seventy-six students, consisting mostly of
senior MIS majors enrolled in a database
course, participated in the experiment. The
average age of the subjects was 22.5, with 49
male and 27 were female students. The sub-
jects held some programming skills such as
Visual Basic Net or Java and were knowl-
edgeable on the basic concepts of Oracle SQL
and relational databases.

The subjects were randomly assigned to
one of the two groups: the control group or
the experimental group. Then the subjects of
both groups were paired by matching a low-
skilled student with a high-skilled student.
Skill level was determined by their perform-

ance on earlier class assignments and their

grade point average. This approach helped
balance the skill level of each team, which is
more similar to real-world software develop—-
ment environments where junior programmer
are often paired with more senior developers.

In the control group, participants were paired
as above and were allowed to discuss their
project with their partner; however, they were
each required to solve the problems independ-
ently and accomplish the work individually at
separate work stations. The results from each
member of the control group were evaluated
individually, while the results from the mem-
bers of the experimental group were sub-
mitted by true pairs and evaluated as a team.
All participants were offered extra credit based

on their performance.

3.2 Task characteristics

A hooklet provided instructions for a set of
tasks representing three complexity levels (easy,
medium, and hard). A single table, multiple
tables, and creation of a nested query were
the criteria for task complexity. To provide
equal workloads for both groups, the pair pro-
gramming group was required to solve two
problems for each level, while individuals in
the control groups were assigned only one
problem per level.

Both groups were presented with the same
Entity-Relationship (ER) diagram, consisting
of eight tables and their relationships and
attributes, as a conceptual data model (see
Appendix A). Before the experiment, the ER

diagram was converted into a physical data

A149 A4z

o] zeagge] A% JAd vie FPo #F A7 23

model and then its tables and constraints
were created in the Oracle Database Manage-

ment System (Version 8.0).

3.3 Procedures

Two separate computer labs were reserved
for the study. Both labs were equipped with
38 Windows XP based PCs loaded with the
Oracle client program (SQLPLUS 8.0). All
subjects were familiar with the labs because
they were used for the database course. Be-
fore the experiment began, the rules and the
guidelines were explained to all participants.
Time limits of 8, 10, and 12 minutes were as-
signed to easy, medium, and hard-level tasks,
respectively (see Appendix B). Participants
completing a task before the time limit were
instructed not to start the next task until the
scheduled time. The subjects were instructed
to record their start and end time for each
question. The students used SQLPLUS to
formulate, and run their queries. SQLPLUS is
an interactive system, with a DOS-based user
interface. If an error occurs, SQLPLUS in-
dicates the nature of the problem. Since the
students had learmed basic SQL syntax for
retrieval and had more than three Lab ses-
sions, they were not allowed to refer to class
notes, the SQL manual, or the textbooks in
this experiment.

34 Dependent variables

The dependent variable performance was
measured by task accuracy and completion

time of the queries. The perceived degree of

enjoyment from collaborative work with the
partner, confidence in results, and learning
from the partner were measured with an exit
survey questionnaire, The questions on the
construct of enjoyment were drawn from pre-
vious research [Agarwal and Karahanna,
2000). The scale used for the dependent vari-
ables of subject perceptions ranged from 0 to
7 (0 = “strongly disagree,” 7= “strongly agree”).

4. Results

T-tests and two-way ANOVA were used
for data analysis. Details of the dependent
variables-accuracy, task completion time and
perceptions on enjoyment, confidence, and

learning are provided in the following sections.

4.1 Accuracy

Before grading a subject’s answers, a grad-
ing criterion was chosen based on critical
clauses of SQL syntax to be included in the
answer for each problem. Two instructors in-
dependently determined the accuracy of the
answers, based on the grading criterion. The
points for each answer ranged from the mini-
mum of 0 to the maximum of 5. The correla-
tion coefficient of the grades from the two
instructors was 091, showing a high inter-
rater reliability for the measure of accuracy.
The total score of pair programming teams in
the experiment group was compared to the
total score of each two-person teams in the
control group. The highest score possible for

the tasks is 30 points as there were six ques-

24 JOURNAL OF INFORMATION TECHNOLOGY APPLICATIONS & MANAGEMENT

tions with five maximum points each.

The accuracy mean and standard deviation
for each groups is shown in <Table 1>. As
expected, the mean scores for the two groups
are similar and accuracy between the two
groups is not statistically different (t-value
=164, p=.12).

(Table 1> Performance accuracy of the groups

Std.

Group N (team) | Mean Deviation
Pair Programming 19 23187 3.654
Individual 19 25.750 2478

Subsequently, we analyzed the task per-
formance with respect to task complexity for
each group. The mean accuracy and standard
deviation for each complexity level are sum-
marized by group in <Table 2>. We found
that the individual (control) group outperfor-
med the pair programming group for the
hard-level task (F =6.86, p-value < 0.05) and
there were no significant differences between
groups for the easy and medium-level tasks
(F=.07, p-value = .80; F=.05, p-value = .83).

{Table 2) Performance accuracy and task complexity

Task Grou N M Std.
complexity D (team) N | Deviation

Pair Programming 19 9500 1.069

Easy-Level | Individual 19 9312 1751

Total - R 9.406 1404

' Pair Programming 19 8375 1.356

Medium-= 't vidual 19 | 8750 | 8%

Level

Total 3 8812 1.108

Pair Programming 19 4812 2658

Hard-Level | Individual 19 7687 1.602

Total 38 6.250 2588

It should be noted that these results are con-
trary to Nosek’s results [Anderson et al., 1998],
which showed that the pair programming
group outperformed the individual group.

4.2 Completion time

Since all tasks were not completed by all
participants, completion times in the analysis
reflect only completed tasks. The means and
standard deviations for each question and
groups are shown in <Table 3>. There is no
significant difference in the task completion
time between the groups. For the last prob-
lem (Q6), since no team in the pair program-
ming group had a correct answer, a compar-

ison between groups was excluded.

(Table 3> Measures of elapsed times for questions for- the

£roups
Std.
N Mean L
GROUP . Deviation |t-value | p-value
(teamn)| (Minutes) (Minutes)
Time forj Pair
ol Program 18 1714 487

Individual | 17 [2000 1164 | 60 | 558

Time for| Pair
® Program 15 1833 1.329

Individual | 17 | 2571 1511 B3

Time for| Pair
0 Program 18 | 2714 1112
Individual | 14 2600 1516 | -15| &8

Time for| Pair
o Program 12 3750 1707

Individual | 14 | 4200 32 5 81

Time for| Par
@ | Program 14 3800 1923

Individual | 8 1.666 b1 182 | 12

4.3 Subject perceptions

As mentioned earlier, enjoyment of collabo-

rative work with a partner, confidence in the

A149 A4

g0} Z2aegeo] A% Ao e Fae] B A7 25

results, and learning from a partner were as-
sessed via an exit survey questionnaire. The
reliability measures of enjoyment, confidence,
and learning based on Cronbach’s alpha were
0.82, 0.89, and 0.78, respectively. Only learning
from the partner in the individual (control)
group was significantly different from the pair
programming group at the .10 level (F =342,
p-value = 0.07). The means and standard de-
viations for the three perception variables of
the two groups are shown in Table 4, and we
found that the perception of learning is higher
in the control group than the pair program-
ming group.

(Table 4> Analysis of perception

Std. P
group Mean Deviation N F value

Pair Program | 5.708 909 B
Enjoyment| Individual | 6062 818 B [1A]| 26
Total 588 810 76
Pair Program | 3968 | 18%2 B
Confidence| Individual | 5000 | 1966 B |28 M
Total 4484 | 199 76
Pair Program | 5145 | 1192 3
Leaming | Individual | 58% | 1100 | B |32 O
Totat 552 | 1191 76

5. Discussion

The results indicate that there is no sig-
nificant difference between the experiment
group (pair programming) and the control
group (individuals) when the control group is
exposed to an environment very similar to the
real~world system development setting. Inter-
estingly, the individual group outperformed
the pair programming group for the hard task,

while there were no differences for the easy
and medium level problems.

None of the other measures, such as com-
pletion time, enjoyment, or confidence, was
significantly different between the two groups.
When the subjects in the control group wor-
ked individually in the collaborative work en-
vironment, they experienced as much enjoy-
ment as pair programmers did. We can infer
from this result that team members in soft-
ware development projects would feel enjoy-
ment of collaboration in itself. Even though
the individual group had higher scores for the
hard problems, the subjects in the group did
not show any difference in their confidence
level. This result could be due to the fact that
both groups executed queries using SQLPLUS.
In other words, they could see their answers
immediately after executing queries even if
the answers were wrong, which might have
caused their confidence levels to be similar.

For the perception of learning from the part-
ner, the individual group again showed a
higher level than the pair programming group.
We believe the reason for this result could be
based on the fact that each individual sought
his/her partner's help after the initial effort.
We observed that each subject in the individual
group began talking soon after the starting
time to solve each problem, which lead them
to ask or discuss only about their concerns.
The critical help from their partners to alle-
viate or remove their initial concerns, in turn,
might have made the individuals to perceive a
higher level of learning from their partners.

The results of this study provide some new

26 JOURNAL OF INFORMATION TECHNOLOGY APPLICATIONS & MANAGEMENT

insights regarding pair programming. First,
our results indicate that in the communica-
tion-allowed environment, which reflects more
accurately the real-world system development
environment, pair programming is not superi-
or to the traditional programming develop-
ment approach. Here, we are not suggesting
that the traditional method is better than pair
programming either. At least in an apples-to-
apples comparison situation, however, there
was no significant difference. Pair program-
ming scholars argue that the real value of the
approach is the ability to identify early design
or coding problems, which later could save
development time and costs. We do agree that
for collaborative efforts, such as error check—
ing, that assertion could be true. However, we
also agree with the critics of pair program-
ming who argue that working together on the
same algorithm or programming maybe a waste
of time [Jeffries, 2001].

Second, our results indicate that, depending
on task complexity, pair programming might
be less effective than the traditional approach.
We did not see any difference for the easy
and medium level tasks, but the individual
group showed higher performance for more
difficult tasks than the pair programming
group. Although it is difficult to generalize
the results based on one experiment, there are
signs that individuals might perform better
for more creative tasks, and not-well-coordi-
nated groups might even out their capability
when teamed with inferior performers. We
should investigate with care as to when and

under what conditions one approach would do

better than the other.

This experiment has several areas that need
further improvements. First, an exercise or
training session before the experiment might
be needed to alleviate unfamiliarity between
team members. We observed that discussion
about the given problems occurred only after
some time had elapsed after the experiment
started. Since all the subjects in the experi-
ment were classmates, we thought they al-
ready knew each other sufficiently enough to
alleviate any unfamiliarity provoked by sud-
den team matching. Since in real-world cases,
some teams are formed without having prior
familiarity, we do not think this arrangement
seriously affected our results. However, we
conjecture that an early team-building exercise
might facilitate more collaboration among the
team members. Second, we believe the se-
quence of task complexity should be random-—
ized. In our experiments we asked the sub-
jects to solve problems in the sequence of
easy, medium and hard tasks. Since learning
is an important factor in performance, the se-
quence might be interplayed with the learning.
Finally, the employed tasks may not be con-
sidered as a close replication of what most
programmers carry out routinely. In fact, SQL
is relatively simple in terms of reflecting pro-
grammer’s creativity and effectiveness of their
performance at work. Despite the loss of gen-
eralizability, we believe task of SQL query
enable us to control another intervening fac-
tor, task complexity at three different levels
which is rarely manipulable in real-world sit—

uations.

144 A3

Ho 2ol A% Hod viAE ¥ BF A7 27

6. Conclusion

In this paper we examined the effects of
pair programming on task performance in an
experimental setting that is close to the soft-
ware development environment in practice.
The results of this study supported our initial
position that there would be no significant
difference in task performance between the
experiment group (pair programmers) and the
control group (individuals working independ-
ently but allowed to communicate with each
other). This result is contrary to the findings
of previous research which revealed that pair
programming groups achieved higher quality
of functionality, more confidence, and more
enjoyment than traditional groups [Nosek, 1998;
Williams et al., 2000].

Different results based on different ex-
perimental design environments warrant more
investigation into this issue. In particular, we
believe that the mix of teams, existence of
collaboration mechanisms, the degree of task
complexity and types of work (whether it is a
design or programming task) will play im-
portant roles in determining the merit of pair

programming.

References

[1] Agarwal, R. and Karahanna, E., “Time
flies when you're having fun:cognitive
absorption and beliefs about information
technology usage”, MIS Quarterly, Vol.
24 No. 4, 2000, pp. 665-694.

{2] Anderson, A., Beattie, R. and Beck, K,

“Chrysler goes to Extreme”, Distributed
Computing, 1998, pp. 24-28, available at
http://www.xprogramming.com/pub-
lications/distributed_computing.htm.

[3] Arsholm, E., Gallis, H, Dyba, T. and
Sjoberg, D. 1. K, “Evaluation pair pro-
gramming with respect to system com-
plexity and program expertise”, IEEE
Transactions on Software Engineering,
Vol. 33 No. 2, 2007, pp. 65-86.

(4] Beck, K., Extreme Programming Expl-
ained, Addison-Wesley, Upper Saddle River,
NJ, 2000.

{5] Canfora, G., Cimitile, A, Di Lucca, G. A,,
and Visaggio, C. A., “How distribution af-
fects the success of pair programming’,
International Journal of Software Engi-
neering and Knowledge Engineering, Vol.
16, No. 2, 2006, pp. 293-313.

[6] Chan, H., Siau, K. and Wei, K., “The ef-
fect of data model, system and task
characteristics on user query performance
- an empirical study”, The Data Base for
Advances in Information Systems, Vol
29, No. 1, 1998, pp. 31-46.

[7]1 Cockburn, A., “Selecting a project's me-
thodology”, IEEE Software, Vol. 17, No.
4, pp. 64-71.

[8] Cusumano, M., MacCormack, A., Kemerer,
C. and Crandall, B. (2003), “Software devel-
opment worldwide: the state of the prac-
tice”, IEEE Software, Vol. 20 No. 6, 2000,
pp. 28-34.

[9] Dubinsky, Y. and Hazzan, O., “A frame-
work for teaching software development

methods”, Computer Science Education,

28 JOURNAL OF INFORMATION TECHNOLOGY APPLICATIONS & MANAGEMENT

Vol. 15 No. 4, 2005, pp. 275-29%.

[10] Flor, N., “Golbally distributed software de-
velopment and pair programming”, Com-
munications of the ACM, Vol. 49 No. 10,
2006, pp. 57-58.

[11] Hale, J., Parrish, A., Dixon, B. and Smith,
R., “Enhancing the Cocomo estimation mo-
dels”, IEEE Software, Vol. 17, No. 6, 2000,
pp. 45-49.

[12] Hieatt, E. and Mee, R., “Going faster:
testing the Web application”, IEEE Sof-
tware, Vol. 19, No. 2, 2002, pp. 60-65.

[13] Jeffries, R., Anderson, A. and Hendrickson,
C., Extreme Programming Installed, Add-
ison-Wesley, Upper Saddle River, NJ, 2001.

[14] Jeffries, R., “What is extreme program-
ming?”, 2001, available at: http://www.
xprogramming.com/(accessed October 2005).

[15] Kendall, K. and Kendall,], Systems
Analysis and Design, 6™ Edition, Pearson/
Prentice Hall, Upper Saddle River, NJ, 2004.

[16] Kraut, R. and Streeter, L., “Coordination
in software development”, Communicati-
ons of the ACM, Vol. 38, No. 3, 1995, pp.
69-81.

[17] Lui, K- M. and Chan, K. C. C., “Pair pro-
gramming productivity : Novice-novice vs.
expert-expert”, International Journal of
Human-Computer Studies, Vol. 64, 2006,
pp. 915-925.

(18] McCormick, M., “Programming extrem-
ism”, Communications of the ACM, Vol.
44, No. 6, 2001, pp. 109-111.

[19] McDowell, C., Werner, L., Bullock, HE.

and Fernald,], “Pair programming im-

proves student retention, confidence, and
program quality”, Communications of the
ACM, Vol. 49, No. 8 2006, pp. 90-95.

[20] Murry, O., Deias, R. and Mugheddy, G.,
“Assessing XP at a European Internet
company’, IEEE Software, Vol. 20, No. 3,
2003, pp. 37-43.

[21] Nosek, J., “The case for collaborative pro-
gramming”, Communications of the ACM,
Vol. 41, No. 3, 1998, pp. 105-108.

[22] Parrish, A., Smith R, Hale, D. and Hale,]J.,
“A field study of developer palr\s/ pro-
ductivity impacts and implications,” IEEE
Software, Vol. 21, No. 5, 2004, pp. 76-79.

[23] Smith, R., Hale, J. and Parrish, A, “An em-

~ pirical study using task assignment pat-
terns to improve the accuracy of software
effort estimation”, IEEE Transactions on
Software Engineering, Vol. 27, No. 3, 2001,
pp. 264-271.

f24] Williams, L. and Kessler, R.,, “All I really
need to know about pair programming I
learned in kindergarten”, Communications
o the ACM, Vol. 43, No. 5, 2000, pp. 108-114.

[25] Williams, L., Kessler, R., Cunningham, W.
and Jeffries, R., “Strengthening the case for
pair-programming”, IEEE Software, Vol.
17, No. 4, 2000, pp. 19-25.

[26] Williams, L., McDowell, C., Nagappan, N.,
Fernald, J. and Werner, L., “Building pair
programming knowledge through a family
of experiments”, Proceeding of the 2003
International Symposium on Empirical
Software Engineering (ISESE03), 2003,
pp. 143-153.

A14¥ A4

#Hol 2] AT Ao nNE G 8¢ 97 29

Appendix A. The conceptual model(ER Diagram) and sample data

NTIS Corporation Sales Systems

Salesrep

slsrepid

last

first

street

cit

s_tayte
Zip_code
total_commi
commi_rate

Customer

custid
last

first
street

city

st

zZip ¢
balance
creditlimit

Part

Order_line

_ part
gagﬁity =~o———+ 1 description

quotedprice u_hand
item_class

\%{ unitprice

wareho use_no

orders

ordid
orderdate

Appendix B. The tasks set

Difficulty level Question contents
. Find out how many customers have a balance that is less than their credit
Question 1 .
lirnit,
Easy . .
. List customer last name (LAST), Balance, and credit limit in ascending order
Question 2 .
of their last name.
. List PARTID, QUANTITY, and QUOTEDPRICE of parts that were sold on
Question 3
. July 4th, 2001.
Medium
. List the sum of balance of all customers for every sales rep. Order the
Question 4 .
results using the sales rep number.
Question 5 List CUSTID, FIRST, LAST, and BALANCE for every customers whose
Hard BALANCE is greater than average balance.
Question 6 Calculate each sales rep’s total commission for July sales. (Hint: commission
= Quantity*Quotedprice*each sales rep’s commission rate (COMMI_RATE))

30 JOURNAL OF INFORMATION TECHNOLOGY APPLICATIONS & MANAGEMENT

L PSP

(=)
FoL

ot} HAtst kAL Univer-
sity of Nebraska—Lincon®] A
A MALE H5sH%oH
A S B9 AEE vkt
HA AgFoltk. LG-CNS
9} Eadlolete Al Al2ElAu @ Aol wo]

T AFAEEE #Uth Computer Information
Systems, Industrial Management & Data
Systems, Management Science 5o th2] A
4E AAstGew Fo FAFEoE HAAYA
g, FRAI2E AL E fE|AHA Y

Solu,

438
University of Nebraska-Lincoln
A4 MBAE #H53t9em &
A T FGAZRE v
Aol Attt HZ ATE
of= M2 Wrjole] §84
HArgde ARBE I8 3 virtual presence
9} physical presence®] 43 A#/A Fo|t}.
Journal of CIS¢t IJITM %] thel Ad$
A 3Tk,

@ 0| =22 2007 08" 242 M$5tod 14kt

ty of Nebraska-Lincolnol| 4]
TR S FRIAT. FEYULAAEE
S AAFAATUETRD, ZEFAZAATY
(KISDD & IT A& 719 2 @7718elA 2
et o @A g HARE I E-A(NIA) o A
AadAFPdoz AAS2 vt Technological
Forecasting & Social Change, Industrial Ma-
nagement & Data Systems, Telecomunica-
tions Review 59 Aol th4e =22 A
stglom Fo WALoke FHIAHE HFE,
gAY Awds RN A 27 Rk
g, AAEFS u-vge] Folrth

SHE HA 20074 108 042 AW &H | AEHCh

