Comparison of finite element analysis of the closing patterns between first and second premolar extraction spaces

상악 제1 및 제2소구치의 발치공간 폐쇄기전에 대한 3차원 유한요소 해석의 비교 연구

  • Koh, Shin-Ae (Department of Orthodontics, School of Dentistry and Dental Research Institute, Seoul National University) ;
  • Im, Won-Hee (Department of Orthodontics, School of Dentistry and Dental Research Institute, Seoul National University) ;
  • Park, Sun-Hyung (Department of Dentistry, Graduates School of Medicine, Ewha Woman University) ;
  • Chun, Youn-Sic (Department of Dentistry, Graduates School of Medicine, Ewha Woman University)
  • 고신애 (서울대학교 치과대학 교정학교실) ;
  • 임원희 (서울대학교 치과대학 교정학교실) ;
  • 박선형 (이화여자대학교 의학전문대학원 치과학교실 교정과) ;
  • 전윤식 (이화여자대학교 의학전문대학원 치과학교실 교정과)
  • Published : 2007.12.31

Abstract

The aim of this study was to compare the differences in closing extraction spaces between maxillary first premolar and second premolar extractions using 3-dimensional finite element analysis (FEA). Methods: Maxillary artificial teeth were selected according to Wheeler's dental anatomy. The size and shape of each tooth, bracket and archwire were made from captured real images by a 3D laser scanner and FEA was performed with a 10-noded tetrahedron. A $10^{\circ}$ gable bend was placed behind the bull loop on a $0.017"{\times}0.025"$ archwire. The extraction space was then closed through 12 repeated activating processes for each 2mm of space. Results and Conclusions: The study demonstrated that the retraction of anterior teeth was less for the second premolar extraction than for the first premolar extraction. The anterior teeth showed a controlled tipping movement with slight extrusion, and the posterior teeth showed a mesial-in rotational movement. For the second premolar extraction, buccal movement of posterior teeth was highly increased.

교정 치료에서 발치공간 폐쇄는 치열을 이루는 모든 치아의 연속적인 이동으로 이루어지므로 그 기전은 복잡하다. 특히 전치부 치축을 적절히 유지하면서 구치부 고정원을 조절하는 과정은 정교함을 요하기 때문에 입체적 분석을 통한 치아이동 양상에 대한 이해가 필요하다. 지금까지의 유한요소 분석은 초기 응력분포를 관찰하여 치아 이동양상을 예측해 보는데 그쳤지만 이러한 양상만으로 정확한 치아이동 결과를 추정하는 데에는 한계가 있었다. 따라서 본 연구에서는 3차원 유한요소 모델을 이용하여 상악 제1소구치 및 제2소구치 발치공간 폐쇄 시 전치부와 구치부의 입체적인 이동 양상을 단계별로 비교하여 그 기전을 규명하고자 하였다. 자연치의 크기 및 형태를 갖는 상악 치아들과 브라켓, 교정용 호선 및 치조골부를 3차원 레이저 스캐너로 스캐닝한 후 사면체 요소의 유한요소 모델을 제작하였다 $0.017"{\times}0.025"$ 스테인레스 강 호선에 제작된 bull 루프 후방에 $10^{\circ}$ gable bend를 부여하고 한 번에 2 mm씩 12회 활성화시켜 발치공간을 폐쇄시켰다. 그 결과 제1소구치를 발치한 경우 제2소구치 발치에 비해 전치부의 후방 이동량이 많았으며 구치부의 전방 이동량은 더 적게 나타났다. 전치부에서는 제f, 2소구치 발치 모두 비슷한 미약한 정출을 동반하였고 치축의 변화량은 제1소구치 발치에서 더 크게 나타났다. 또한 제2소구치 발치 시 고정원의 협측 이동량이 더 크게 나타났다

Keywords

References

  1. Proffit WR. Forty-year review of extraction frequencies at a university orthodontic clinic. Angle Orthod. 1994;64:407-14
  2. Gottlieb EL, Nelson AH, Vogels DS. 1986 JCO study of orthodontic diagnosis and treatment procedures. Part 1 - Overall results. J Clin Orthod. 1986;20:612-25
  3. Gottlieb EL, Nelson AH, Vogels DS. 1996 JCO study of orthodontic diagnosis and treatment procedures. Part 1 - Results and trends. J Clin Orthod. 1996;30:615-29
  4. Crossman IG, Reed RT. Long term results of premolar extractions in orthodontic treatment. Br J Orthod. 1978;5:61-6 https://doi.org/10.1179/bjo.5.2.61
  5. De Castro N. Second-premolar extraction in clinical practice. Am J Orthod. 1974;65:115-37 https://doi.org/10.1016/0002-9416(74)90174-2
  6. Williams R, Hosila FJ. The effect of different extraction sites upon incisor retraction. Am J Orthod. 1976;69:388-410 https://doi.org/10.1016/0002-9416(76)90208-6
  7. Creekmore TD. Where teeth should be positioned in the face and jaws and how to get them there. J Clin Orthod. 1997;31:586-608
  8. Ong HB, Woods MG. An occlusal and cephalometric analysis of maxillary first and second premolar extraction effects. Angle Orthod. 2001;71:90-102
  9. Lee RT. Arch width and form: a review. Am J Orthod Dentofac Orthop. 1999;115:305-13 https://doi.org/10.1016/S0889-5406(99)70334-3
  10. Saelens NA, De Smit AA. Therapeutic changes in extraction versus non-extraction orthodontic treatment. Eur J Orthod. 1998;20:225-36 https://doi.org/10.1093/ejo/20.3.225
  11. Chong OY, Jang YJ, Chun YS, Jung SH, Lee SK. The evaluation of rotational movements of maxillary posterior teeth using three dimensional images in cases of extraction of maxillary first premolar. Kor J Orthod. 2005;35:451-8
  12. Yang SJ, Jung SG, Row J, Chun YS. An experimental study on the dynamic teeth movement of 3 types of the insertion method of Precision-TPA for rotating the posterior teeth. Kor J Orthod. 1999;29:425-33
  13. Kunavisarut C, Lang LA, Stoner BR, Felton DA. Finite element analysis on dental implant-supported prostheses without passive fit. J Prosthodont. 2002;11:30-40
  14. Kim HJ, Chun YS, Jung SH. Spatial changes of the upper dentition following en-masse space closure: A comparison between first and second premolar extraction. Kor J Orthod. 2005;35:371-80
  15. Kojima Y, Fukui H. Numerical simulation of canine retraction by sliding mechanics. Am J Orthod Dentofac Orthop. 2005;127:542-51 https://doi.org/10.1016/j.ajodo.2004.12.007
  16. Choi JK, FEA for CAE engeener. Paju: Cheong Moon Gak; 2004. p. 120-128
  17. Park HJ, FEA using ANSYS. Seoul: Wangmoonkag; 2001. p. 50-61
  18. Toms SR, Dakin GJ, Lemons JE, Eberthardt AW. Quasi-linear viscoelastic behavior of the human periodontal ligament. J Biomech. 2002;35:1411-5 https://doi.org/10.1016/S0021-9290(02)00166-5
  19. Sung SJ, Baik HS, Moon YS, Yu HS, Cho YS. A comparative evaluation of different compensating curves in the lingual and labial techniques using 3D FEM. Am J Orthod Dentofac Orthop. 2003;123:441-50 https://doi.org/10.1067/mod.2003.9
  20. Toms SR, Eberhardt AW. A nonlinear finite element analysis of the periodontal ligament under orthodontic tooth loading. Am J Orthod Dentofac Orthop. 2003;123:657-65 https://doi.org/10.1016/S0889-5406(03)00164-1
  21. Toms SR, Lemons JE, Bartolucci AA, Eberhardt AW. Nonlinear stress-strain behavior of periodontal ligament under orthodontic loading. Am J Orthod Dentofac Orthop. 2002;122:174-9 https://doi.org/10.1067/mod.2002.124997
  22. Wheeler RC. Dental anatomy, physiology and occlusion. 5th Ed. Philadelphia: Saunder; 1974
  23. Kusnoto B, Evans CA. Reliability of a 3D surface laser scanner for orthodontic applications. Am J Orthod Dentofac Orthop. 2002;122:342-8 https://doi.org/10.1067/mod.2002.128219
  24. Korean association of orthodontics. Dental model analysis of Korean adult with normal occlusion. Seoul, Korea; 2000
  25. Cobo J, Arguelles J, Puente M, Vijande M. Dentoalveolar stress from bodily tooth movement at different levels of bone loss. Am J Orthod Dentofac Orthop. 1996;110:256-62 https://doi.org/10.1016/S0889-5406(96)80008-4
  26. Braun S, Garcia JL. The Gable bend revisited. Am J Orthod Dentofac Orthop. 2002; 122:523-7 https://doi.org/10.1067/mod.2002.126727
  27. Burstone CJ. Applications of Bioengineering to Clinical Orthodontics. In: Graber TM editor. Current Orthodontic Concepts and Techniques I, 2nd Edition. St Louis: Mosby; 1975. p. 230-58
  28. Chun YS, Row J, Jung SH, Kim HJ. A study on the effect of the magnitude of the gable bends on the tooth movement pattern during en-masse space closure in the maxillary dentition. Kor J Orthod. 2004;34:33-45