토오크 양에 따른 세라믹 브라켓의 파절 저항성

Fracture resistance of ceramic brackets to arch wire torsional force

  • 한정흠 (고려대학교 임상치의학대학원) ;
  • 장민희 (고려대학교 임상치의학대학원) ;
  • 임용규 (고려대학교 임상치의학대학원) ;
  • 이동렬 (고려대학교 임상치의학대학원)
  • Han, Jung-Heum (Department of Orthodontics, Graduate School of Clinical Dentistry, Korea University) ;
  • Chang, Minn-Hii (Department of Orthodontics, Graduate School of Clinical Dentistry, Korea University) ;
  • Lim, Yong-Kyu (Department of Orthodontics, Graduate School of Clinical Dentistry, Korea University) ;
  • Lee, Dong-Yul (Department of Orthodontics, Graduate School of Clinical Dentistry, Korea University)
  • 발행 : 2007.08.30

초록

본 연구에서는 임상에서 쓰이는 수종의 치과교정용 세라믹 브라켓에 교정용 호선으로 토오크 적용 시 파절에 저항하는 정도를 비교하고 그 파절 양상을 관찰하였다. $022\;{\times}\;028-inch$ slot을 가진 상악 중절치 세라믹 브라켓에 $0215\;{\times}\;027-inch$ 스테인레스 강 교정용 호선에서 발생하는 설측 치근 토오크를 적용시켜 각 15개씩 7종의 브라켓을 시험하였다. 파절 시험용 장치를 제작하고 토오크 각도를 증가시키면서 만능시험기로 세라믹 브라켓이 파절되는 순간의 토오크 값을 측정하였다. 또한 세라믹 브라켓의 파절 양상을 알아보고자 토오크 값 측정 후 파절이 일어난 부위를 관찰하고 그 위치를 기록한 주사전자현미경으로 파절면을 관찰하였다. 나타난 결과를 토대로 볼 때 세라믹 브라켓의 결정구조와 제조 방법이 파절 저항성에 크게 영향을 주는 것으로 나타났다. 단결정 알루미나 (Inspire) 브라켓이 InVu를 제외한 다결정 알루미나 브라켓에 비하여 토오크에 대한 파절 저항성이 유의성 있게 크게 나타났다 (p < 0.05). Metal slot이 삽입된 브라켓은 그렇지 않은 브라켓과 토오크에 대한 저항성에서 유의한 차이를 보이지 않았다 (p >0.05). 파절 양상에 관한 관찰에서는 metal slot이 있는 다결정 알루미나 브라켓인 Clarity는 모두 절단측 slot base에서 부분적으로만 파절이 일어났고 다른 종류의 브라켓들은 다양한 부위에서 파절이 일어났다. 본 연구 결과, 실험에 사용한 모든 세라믹 브라켓에서 파절이 일어난 순간의 토오크 값과 토오크 각은 실제로 상악 중절치의 치근을 이동하는데 필요한 토오크보다 큰 것이었으므로, 실제 임상 치료 시 적절한 파절 저항을 나타낼 것으로 보였다.

The purpose of this study was to estimate the fracture resistance of commercially available ceramic brackets to torsional force exerted from arch wires and to evaluate the characteristics of bracket fracture. Methods: Lingual root torque was applied to maxillary central incisor brackets with 0.022-inch slots by means of a $022\;{\times}\;028-inch$ stainless steel arch wire. A custom designed apparatus that attached to an Instron was used to test seven types of ceramic brackets (n = 15). The torque value and torque angle at fracture were measured. In order to evaluate the characteristics of failure, fracture sites and the failure patterns of brackets were examined with a Scanning Electron Microscope. Results: Crystal structure and manufacturing process of ceramic brackets had a significant effect on fracture resistance. Monocrystalline alumina (Inspire) brackets showed significantly greater resistance to torsional force than polycrystalline alumina brackets except InVu. There was no significant difference in fracture resistance during arch wire torsional force between ceramic brackets with metal slots and those without metal slots (p > 0.05). All Clarity brackets partially fractured only at the incisal slot base and the others broke at various locations. Conclusion: The fracture resistance of all the ceramic brackets during arch wire torsion appears to be adequate for clinical use.

키워드

참고문헌

  1. Swartz ML. Ceramic brackets. J Clin Orthod 1988;22:82-8
  2. Karamouzos A, Athanasiou AE, Papadopoulos MA. Clinical characteristics and properties of ceramic brackets: A comprehensive review. Am J Orthod Dentofacial Orthop 1997;112:34-40 https://doi.org/10.1016/S0889-5406(97)70271-3
  3. Birnie D. Ceramic brackets. Br J Orthod 1990;17:71-4 https://doi.org/10.1179/bjo.17.1.71
  4. Scott GE Jr. Fracture toughness and surface cracks--the key to understanding ceramic brackets. Angle Orthod 1988;58:5-8
  5. Ghafari J. Problems associated with ceramic brackets suggest limiting use to selected teeth. Angle Orthod 1992;62:145-52
  6. Holt MH, Nanda RS, Duncanson MG Jr. Fracture resistance of ceramic brackets during arch wire torsion. Am J Orthod Dentofacial Orthop 1991;99:287-93 https://doi.org/10.1016/0889-5406(91)70010-T
  7. Rhodes RK, Duncanson MG Jr, Nanda RS, Currier GF. Fracture strengths of ceramic brackets subjected to mesial-distal archwire tipping forces. Angle Orthod 1992;62:67-76
  8. Lindauer SJ, Macon CR, Browning H, Rubenstein LK, Isaacson RJ. Ceramic bracket fracture resistance to second order arch wire activations. Am J Orthod Dentofacial Orthop 1994;106:481-6 https://doi.org/10.1016/S0889-5406(94)70070-2
  9. Gunn S, Powers JM. Strength of ceramic brackets in shear and torsion tests. J Clin Orthod 1991;25:355-8
  10. Aknin PC, Nanda RS, Duncanson MG Jr, Currier GF, Sinha PK. Fracture strength of ceramic brackets during arch wire torsion. Am J Orthod Dentofacial Orthop 1996;109:22-7 https://doi.org/10.1016/S0889-5406(96)70159-2
  11. Graber TM, Varnarsdall JR. Current principles and techniques. 3rd edition. St. Louis: Mosby; 2000. p. 29-30
  12. Rauch ED. Torque and its application to orthodontics. Am J Orthod 1959 ; 817-30
  13. Mackley RJ. An evaluation of smiles before and after orthodontic treatment. Angle Orthod 1993;63:183-9
  14. Isaacson RJ, Lindauer SJ, Rubenstein LK. Moments with the edgewise appliance: Incisor torque control. Am J Orthod Dentofacial Orthop 1993;103:428-38 https://doi.org/10.1016/S0889-5406(05)81793-7
  15. Gurgel Jde A, Kerr S, Powers JM, Pinzan A. Torsional properties of commercial nickel-titanium wires during activation and deactivation. Am J Orthod Dentofacial Orthop 2001;120:76-9 https://doi.org/10.1067/mod.2001.115147
  16. Andreasen GF, Amborn RM. Aligning, leveling, and torque control--a pilot study. Angle Orthod 1989;59:51-60
  17. McLaughlin RP, Bennett JC. Finishing and detailing with a preadjusted appliance system. J Clin Orthod 1991;25:251-64
  18. Spiegel MR. Vector analysis and an introuction to tensor analysis. New York: Schaum Publishing; 1959. p. 16-26
  19. Bramble LM. A parpdigm of the marketplace. Am J Orthod Dentofacial Orthop 1988;94:354-5 https://doi.org/10.1016/0889-5406(88)90061-3
  20. Proffit WR. Contemporary orthodontics. 3rd ed. St Louis: Mosby; 2000. p. 411-4
  21. Flores DA, Caruso JM, Scott GE, Jeiroudi MT. The fracture strength of ceramic brackets: a comparative study. Angle Orthod 1989;60:269-76
  22. Reitan K. Some factors determining the evaluation of forces in orthodontics. Am J Orthod 1957;43:3-45
  23. Newman GV. A biomechanical analysis of the Begg light arch wire technique. Am J Orthod 1963;49:721-40 https://doi.org/10.1016/0002-9416(63)90245-8
  24. Neuger RL. The measurement and analysis of moments applied by a light-wire torquing auxiliary and how these moments change magnitude with respect to various changes in configuration and applications. Am J Orthod 1967;53:492-513 https://doi.org/10.1016/0002-9416(67)90206-0
  25. Wainwright WM. Faciolingual tooth movement: its influence on the root and cortical plate. Am J Orthod 1973;64:278-302 https://doi.org/10.1016/0002-9416(73)90021-3
  26. Hammond M, Rock WP. Forces produced by auxiliary torquing springs in the Begg technique. Br J Orthod 1991;18:219-23 https://doi.org/10.1179/bjo.18.3.219
  27. Schrody DW. A mechanical evaluation of buccal segment reaction to edgewise torque. Angle Orthod 1974;44:120-6
  28. Steyn CL. Measurement of edgewise torque force in vitro. Am J Orthod 1977;71:565-73 https://doi.org/10.1016/0002-9416(77)90006-9
  29. Nikolai RJ. Bioengineering analysis of orthodontic mechanics. Philadelphia: Lea & Febiger; 1985. p. 299-305
  30. Wheeler RC. A textbook of dental anatomy and physiology. 4th ed. Philadelphia: WB Saunders, 1965. p. 136
  31. Johnson G, Walker MP, Kula K. Fracture strength of ceramic bracket tie wings subjected to tension. Angle Orthod 2005;75:95-100
  32. Kiourtsis DJ. A comparison of the slot dimensions and prescribed torque angles among four brands of ceramic brackets [thesis]. Columbus: The Ohio State University; 1992
  33. Kusy RP. Morphology of polycrystalline alumina brackets and its relationship to fracture toughness and strength. Angle Orthod 1988;58:197-203
  34. Alkire RG, Bagby MD, Gladwin MA, Kim H. Torsional creep of polycarbonate orthodontic brackets. Dent Mater 1997;13:2-6 https://doi.org/10.1016/S0109-5641(97)80001-2
  35. Feldner JC, Sarkar NK, Sheridan JJ, Lancaster DM. In vitro torque-deformation characteristics of orthodontic polycarbonate brackets. Am J Orthod Dentofacial Orthop 1994;106:265-72 https://doi.org/10.1016/S0889-5406(94)70046-X
  36. Gioka C, Eliades T. Materials-induced variation in the torque expression of preadjusted appliances. Am J Orthod Dentofacial Orthop 2004;125:323-8 https://doi.org/10.1016/j.ajodo.2003.02.007
  37. Viazis AD, Chabot KA, Kucheria CS. Scanning electron microscope (SEM) evaluation of clinical failures of single crystal ceramic brackets. Am J Orthod Dentofacial Orthop 1993;103:537-44 https://doi.org/10.1016/0889-5406(93)70094-5
  38. Ghosh J, Nanda RS, Duncanson MG Jr, Currier GF. Ceramic bracket design: an analysis using the finite element method. Am J Orthod Dentofacial Orthop 1995;108:575-82 https://doi.org/10.1016/S0889-5406(95)70002-1
  39. Eliades T, Lekka M, Eliades G, Brantley WA. Surface characterization of ceramic brackets: a multitechnique approach. Am J Orthod Dentofacial Orthop 1994;105:10-8 https://doi.org/10.1016/S0889-5406(94)70094-X
  40. Gibbs SL. Clinical performance of ceramic brackets: a survey of British orthodontists'experience. Br J Orthod 1992;19;191-7 https://doi.org/10.1179/bjo.19.3.191