DOI QR코드

DOI QR Code

Analysis of the Relation between Spatial Resolution of Initial Data and Satellite Data Assimilation for the Evaluation of Wind Resources in the Korean Peninsula

한반도 풍력자원 평가를 위한 초기 공간해상도와 위성자료 동화의 관계 분석

  • Lee, Soon-Hwan (BK21 Coastal Environment System School, Pusan National University) ;
  • Lee, Hwa-Woon (Department of Earth Environmental System, Pusan National University) ;
  • Kim, Dong-Hyuk (Department of Earth Environmental System, Pusan National University) ;
  • Kim, Hyeon-Gu (Korea Institute of Energy Research)
  • 이순환 (부산대학교 BK21 연안환경시스템 사업단) ;
  • 이화운 (부산대학교 지구환경시스템학부) ;
  • 김동혁 (부산대학교 지구환경시스템학부) ;
  • 김현구 (한국에너지기술연구원)
  • Published : 2007.12.31

Abstract

Several numerical experiments were carried out to clarify the influence of satellite data assimilation with various spatial resolution on mesoscale meteorological wind and temperature field. Satellite data used in this study is QuikSCAT launched on ADEOS II. QuikSCAT data is reasonable and faithful sea wind data, which have been verified through many observational studies. And numerical model in the study is MM5 developed by NCAR. Difference of wind pattern with and without satellite data assimilation appeared clearly, especially wind speed dramatically reduced on East Sea, when satellite data assimilation worked. And sea breeze is stronger in numerical experiments with RDAPS and satellite data assimilation than that with CDAS and data assimilation. This caused the lower estimated surface temperature in CDAS used cases. Therefore the influence of satellite data assimilation acts differently according to initial data quality. And it is necessary to make attention careful to handle the initial data for numerical simulations.

Keywords

References

  1. 강인식, 김맹기, 심태보(1994) 한반도주위 해양에서의 해면 열수지와 응력의 계절변화, 한국해양학회지, 29(4), 325-337
  2. 김현구, 최재우 (2002) 풍력에너지 이용 및 개발현황, RIST 연구논문, 16(4), 479-485
  3. 김건훈, 이동현, 주영철, 유승덕, 허종철, 변수환 (2003) 국내 풍력자원 측정 및 결과 분석, 한국 풍력 및 전책 워크샵, 한국 풍력 기술 연구회, 72-80
  4. 김현구, 이화운, 정우식(2005) 한반도 바람지도 구축에 관한 연구: I. 원격탐사자료를 이용한 해상풍력 자원 평가, 한국대기환경학회지, 21(1), 63-72
  5. 나정열, 서장원, 한상규(1992) 한국근해의 월평균 해상풍, 한국해양학회지, 27(1), 1-10
  6. 이동규(1998) NSCAT에 의한 한국근해의 해상풍, 한국원격탐사학회지, 14(1), 37-52
  7. 이순환, 박근영, 류찬수(2006a) 레이더 자료동화에 따른 기상장 모의 민감도에 관한 수치연구, 한국환경과학회지, 15(1), 9-19 https://doi.org/10.5322/JES.2006.15.1.009
  8. 이순환, 박광순(2006b) 해수면 온도변화에 따른 제주도 후면 흐름구조 변화에 관한 수치연구, 한국지구과학회지, 27(1), 61-72
  9. Christmann, R. (2007) Wind energy in Germany-policy, status and research activity, International Workshop for wind energy, Jeju
  10. Dudhia, J., D. Gill, Y.-R. Guo, K. Manning, W. Wang, and V. Collin (2000) PSU/NCAR mesoscale modeling system tutorial class note and user's guide, Mesoscale and Microscale Meteorology Division, NCAR, 5-12
  11. Lee, S.-H., D.-H. Kim, and H.-W. Lee (2007a) Satellite-based Assessment of the Impact of Sea-Surface Winds on Regional Atmospheric Circulations over the Korean Peninsula, International Journal of Remote Sensing (now print)
  12. Lee, S.-H., Y.-K. Kim, H.-S. Kim, and H.-W. Lee (2007b) Influence of dense surface meteorological data assimilation on the prediction accuracy of ozone pollution in the southeastern coastal area of the Korean Peninsula, Atmospheric Environment, 41(21), 4451-4465 https://doi.org/10.1016/j.atmosenv.2007.01.050
  13. Lee, S.-H., M. Chino, T. Kobayashi, and C.-S. Ryu (2005) Ocean model coupling with atmospheric model for prediction of radioactivity contaminant dispersion in emergency, Journal of Nuclear Science and Technology, 42, 1-13 https://doi.org/10.3327/jnst.42.1
  14. Parsons, B., M. Milligan, B. Zavadil, D. Brooks, B. Kirby, K. Dragoon, and J. Caldwell (2004) Grid impacts of wind power: A summary of recent studies in the United states, Wind Energy, 7(2), 87-108 https://doi.org/10.1002/we.111
  15. Zhang, D.-L. and W.-Z. Zheng (2004) Diurnal cycles of surface winds and temperatures as simulated by five boundary layer parameterization, Journal of Applied Meteorology, 43, 157-169 https://doi.org/10.1175/1520-0450(2004)043<0157:DCOSWA>2.0.CO;2

Cited by

  1. Evaluation of wind resource using numerically optimized data in the southwestern Korean Peninsula vol.46, pp.4, 2010, https://doi.org/10.1007/s13143-010-0021-4