Prediction of Runoff on a Small Forest Watershed Using BROOK90 Model

BROOK90 모형을 이용한 산림소유역의 유출량 추정

  • Im, Sang-Jun (Department of Forest Sciences, Seoul National University) ;
  • Lee, Sang-Ho (Department of Forest Sciences, Seoul National University) ;
  • Lee, Hee-Gon (Department of Forest Sciences, Seoul National University) ;
  • Ahn, Su-Jung (Department of Forest Sciences, Seoul National University)
  • Published : 2007.03.30

Abstract

Water balance is the major factor in forest ecosystem, and is closely related to the vegetation and topographic characteristics within a watershed. The hydrologic response of a forest watershed was investigated with the hydrological model. The deterministic, lumped parameter model (BROOK90) was selected and used to evaluate the applicability of the model for simulating daily runoff on the steep, forested watershed. The model was calibrated and validated against the streamflow data measured at the Bukmoongol watershed. The deviation in runoff volume $(D_v)$ was -1.7% for the calibration period, and the $D_v$ value for the validation period was 4.6%. The correlation coefficient (r) and model efficiency (E) on monthly basis were 0.922,0.847, respectively, for the calibration period, while the r- and E-value for the validation period were 0.941, 0.871, respectively. Overall, the simulated streamflows were close to the observations with respect to total runoff volume, seasonal runoff volume, and baseflow index for the simulation period. BROOK90 model was able to reproduce the trend of runoff with higher correlation during the simulation period.

산림 수자원의 효율적인 관리를 위해서는 산림유역에서 발생하고 있는 수문현상에 대한 정확한 정보가 필요하다. 본 연구에서는 수문모형을 이용하여 산림유역의 식생 및 지형에 따른 수문반응을 해석하였다. 이를 위하여 결정론적, 총괄형 모형인 BROOK90모형을 선정하였으며, 산림소유역인 북문골 유역(15ha)에서 측정된 일별 하천유량 자료를 이용하여 모형의 매개변수 보정과 검증을 실시하였다. 북문골 소유역의 실측 유출량과 BROOK90모형에 의해 추정된 일별 평균 유출량의 편차는 모형의 보정기간에 대하여 -1.7%이었으며, 검증기간에 대해서는 4.6%로 나타났다. 한편, 월 평균 유출량의 상관계수와 모형효을을 이용하여 모형의 적용성을 분석하였다. 보정기간에 대한 상관계수와 모형효율은 각각 0.922와 0.847이었으며, 검증기간에 대해서는 그 값이 각각 0.941, 0.871로 나타났다. 북문골 소유역의 일별 유출량 자료를 이용하여 BROOK90모형의 적용한 결과, BROOK90모형은 우리나라와 같이 사면의 경사가 급하고 토층이 얕은 산림유역의 유출량 추정에 잘 활용될 수 있으며, 벌채나 기후변화 등에 따른 산림유역의 수문반응을 평가하는 도구로 활용할 수 있을 것으로 보인다.

Keywords

References

  1. 우보명, 김재수, 이헌호, 최형태. 1998. 산림소유역의 장단기 유출해석을 위한 강우-유출모형의 개발. 한국임학회지 87(1): 11-19
  2. 임상준. 2000. 농업유역의 논 관개회귀수량 추정 모형의 개발, 서울대학교 박사학위논문. p. 120
  3. 최형태. 2001. 분포형 수문모형 TOPMODEL을 이용한 산림유역 강우-유출모형의 개발, 서울대학교 박사학위논문. p. 183
  4. Armbruster, M., J. Seegert and K.-H. Feger. 2004. Effects of changes in tree species composition on water flow dynamics-Model applications and their limitations. Plant and Soil 264: 13-24 https://doi.org/10.1023/B:PLSO.0000047716.45245.23
  5. ASCE. 1993. Criteria for evaluation of watershed models. J. Irrig. Drain. Eng. 119(3): 429-442 https://doi.org/10.1061/(ASCE)0733-9437(1993)119:3(429)
  6. Beven, K.J., R. Lamb, P. Quinn, R. Romanowicz and J. Freer. 1995. TOPMODEL. p. 627-668. In Computer models of watershed hydrology (Singh, V.P. ed.). Water Resources Publications. Highlands Ranch, CO
  7. Canfield, H.E. and V.L. Lopes. 2000. Simulating soil moisture changes in a semiarid rangeland watershed with a process-based water-balance model. USDA Forest Service Proceeding RMRS-P-13, pp. 316-319
  8. Dam, O. 2001. Forest filled with gaps: Effects of gap size on water and nutrient cycling in tropical rain forest. Tropenbos-Guyana Series 10. Georgetown. Guyana
  9. Donigian, A.S. Jr., J.C. Imhoff, B.R. Bicknell and J.L. Kittle. 1984. Application guide for Hydrological Simulation Program-Fortran (HSPF), EPA-600/3-84-065, Environmental Research laboratory, Athens, GA
  10. Federer, C.A. and C. Vorosmarty. 2003. Sensitivity of annual evaporation to soil and root properties in two models of contrasting complexity. J. Hydrometeo. 4(6): 1276-1290 https://doi.org/10.1175/1525-7541(2003)004<1276:SOAETS>2.0.CO;2
  11. Federer, C.A. 1995. BROOK 90: A simulation model for evaporation, soil water, and streamflow. Computer freeware and documentation. USDA Forest Service. New Hampshire
  12. Hatton, T.J., J. Walker, W. Dawes and F.X. Dunin. 1992. Simulation of hydroecological responses to elevated $CO_2$ at the catchment scale. Aust. J. Bot. 40: 679-696 https://doi.org/10.1071/BT9920679
  13. Nash, J.E. and J.V. Sutcliffe. 1970. River flow forecasting through conceptual models. J. Hydrol. 10: 282-290 https://doi.org/10.1016/0022-1694(70)90255-6
  14. Running, S.W. and J.C. Coughlan. 1988. A general model of forest ecosystem processes for regional applications. I. Hydrologic balance, canopy gas exchange and primary production processes. Ecol. Model. 42: 125-154 https://doi.org/10.1016/0304-3800(88)90112-3
  15. Rutledge, A.T. 1998. Computer programs for describing the recession of ground-water discharge and for estimating mean ground-water recharge and discharge from streamflow data-update: USGS Water-Resources Investigations Report 98-4148. p. 43
  16. Watson, F.G.R. 1999. Large scale, long term, physically based modelling of the effects of land cover change on forest water yield, PhD dissertation of the Univ. of Melbourne, Australia, p. 443