Abstract
In 2003, we evaluated biological water quality at twelve sites of Youngsan River using community analysis, fish compositions, and the Index of Biological Integrity (IBI). Of the twelve, four sites were the controls, which have no point sources in the upstream and the remaining eight sites were the impacted sites, which are influenced by wastewater treatment plant (WTP) and agro-industrial complex. Model values of the IBI, based on 12 sites data, averaged 28 (n=12, range: $18{\sim}44$), indicating fair poor condition according to the criteria of US EP A (1993). In the mean time, mean IBI in the control sites (S3, S5, S6, S11) was 42 (n=4, range: $38{\sim}44$), indicating a good condition, whereas mean IBI in the impacted sites was 21, indicating a poor condition. Mean IBI value in the control, thus, was greater by 2 fold than that in the WTP sites. The spatial pattern of IBI values was similar to the patterns of species diversity index and species richness index, except for Site 11, which was 1st order stream. Similarity analysis indicated that three groups were divided at the similarity level of 80%. One group was the streams influenced by wastewater and the other two groups were the pristine streams as the control, indicating that the stream health conditions are directly influenced by presence or absence of the point sources. Also, Pearson's correlation analysis showed that IBI values had negative correlation (r=0.899, p<0.001) with relative abundance of tolerance species, and had positive relation (r=0.890, p<0.001) with sensitive species. Overall, outcomes suggest that the point sources of the WTP might impact the species composition and ecological health, resulting in degradation of biological water quality.
본 연구는 2003년 영산강 수계내 12개 조사지점에서 어류 군집분석, 개체 특성분석 및 생태 건강성 지수(IBI) 산정을 통해 하천의 생물학적 수질을 비교 분석하였다. 12개 조사정점 중 4개 지점은 오염의 영향이 없는 대조군 지점이었고, 나머지 8개 지점은 농공폐수 및 하수처리장 배출수의 영향을 받는 지점이었다. 본 조사수역 12개 지점에서 산정된 평균 생태 건강성 지수(IBI)는 28(n=12, 범위: $18{\sim}44$)로서 U.S. EPA(1993)의 기준에 의거할 때 악화${\sim}$보통상태$(Fair{\sim}poor)$를 보였다. 한편, 대조군 지점(S3, S5, S6, S11)의 평균 생태 건강성 지수는 42(n=4, 변이폭: $38{\sim}44$)로서 양호상태(Good)를 보인 반면, 농공 폐수 및 하수처리장 배출수의 영향을 받는 나머지 8개 지점에서 평균 건강성 지수는 21(n=8, $18{\sim}24$)로서 악화상태(Poor)를 보여 2배 정도의 뚜렷한 차이를 보였다. 이런 건강도 지수의 지점별 변이는 종 풍부도 지수 및 종 다양도 지수와 거의 일치하였으나,1차 하천인 S11은 불일치하였다. 즉, 하천차수가 낮은 상류의 1차 하천은 종 다양도 혹은 군집 풍부도 지수에 의해 생태건강도가 평가될 경우 하천의 크기를 고려하지 않아 상대적으로 과소평가 되는 것으로 나타났다. 군집 유사도 분석 결과에 따르면, 유사도 수준 80%(p<0.05)에서 지점은 3개 그룹으로 대별되었다. 하나의 그룹은 폐수에 의해 영향을 받는 지점이었고, 나머지 2개의 그룹은 오염에 의해 영향 받지 않는 2개 대조군 그룹으로 대별되었다. 상관도 분석에 따르면, 생물학적 건강성 지수는 내성종의 상대빈도와 역상관 관계(r=-0.899, p<0.001)를 보였으며, 민감종과는 정상관 관계(r=0.890, p<0.001)를 보였다. 이런 결과는 본 수역에서 농공폐수 및 하수처리장 배출수 방류는 하천의 생물학적 수질 악화에 직접적인 영향을 주며, 수자원의 보호를 위해서는 이러한 배출수와 같은 오염원의 관리를 강화해야 한다는 것을 제시한다.