Influence of preserved brewing yeast strains on fermentation behavior and flocculation capacity

  • Cheong, Chul (Department of Fermented Food Science, Seoul University of Venture and Information) ;
  • Wackerbauer, Karl (Department of Biotechnology, Technical University of Berlin, Germany) ;
  • Beckmann, Martin (Department of Biotechnology, Technical University of Berlin, Germany) ;
  • Kang, Soon-Ah (Department of Fermented Food Science, Seoul University of Venture and Information)
  • Published : 2007.12.31

Abstract

Preservation methods on the physiological and brewing technical characters in bottom and top brewing yeast strains were investigated. The preserved yeasts were reactivated after 24 months storage and grown up to stationary phase. The samples of filter paper storage indicated a higher cell growth and viability during propagation than those of nitrogen and lyophilization storage independent on propagation temperature. In addition, the filter paper storage demonstrated a faster absorption of free amino nitrogen and a highest level of higher aliphatic alcohols production during propagation than other preservation methods, which can be attributed to intensive cell growth during propagation. Moreover, the filter paper storage showed a faster accumulation for glycogen and trehalose during propagation, whereas, in particular, lyophilization storage noted a longer adaptation time regarding synthesis of glycogen and trehalose with delayed cell growth. In beer analysis, the filter paper storage formed an increased higher aliphatic alcohols than control. In conclusion, the preservation of filter paper affected positively on yeast growth, viability and beer quality independent on propagation temperature. In addition, in this study, it was obtained that the HICF and Helm-test can be involved as rapid methods for determination of flocculation capacity.

Keywords

References

  1. Amory DE, Rouxhet PG & Dufour JP (1988). Flocculence of brewery yeasts and their surface properties: chemical composition, electrostatic charge and hydrophobicity. J Inst Brew 94:79-84 https://doi.org/10.1002/j.2050-0416.1988.tb04561.x
  2. Costa MJ & Ferreira PMS (1993). Cerevisiae flocculation: identification of specific cell wall proteins. European Brewery Convention Congress. Oslo. 283-290
  3. Dengis PB, Nelissen LR & Rouxhet PG (1995). Mechanisms of yeast flocculation: comparison of top and bottom fermenting strains. Appl Environ Microbiol 61:718-728
  4. Dengis PB & Rouxhet PG (1997). Surface properties of top and bottom fermenting yeast. Yeast 13:931-943 https://doi.org/10.1002/(SICI)1097-0061(199708)13:10<931::AID-YEA149>3.0.CO;2-T
  5. Dengis PB & Rouxhet PG (1997). Flocculation mechanisms of top and bottom fermenting brewing yeast. J Inst Brew 103:257-261 https://doi.org/10.1002/j.2050-0416.1997.tb00954.x
  6. Fischborn T (1997). Untersuchungen zum Trocknungsverhalten untergaeriger Hefen. Ph.D. Disser. Technische Universitaet Muenchen
  7. Fischer K & Rahn J (2000). Einfluss der Stammkonservierung auf die genetische Satabilitaet von Backhefen. Branntweinwirtschfaft 140:17-21
  8. Fontana A, Bidenne C, Ghommidh C, Guiraud P & Vezinhet F (1992). Study of the flocculation of Saccharomyces diastaticus NCYC 625. J Inst Brew 98:401-407 https://doi.org/10.1002/j.2050-0416.1992.tb01123.x
  9. Harrison M (1996). Laboratory management of yeast. Ferment 9:35-36
  10. Hill LR (1981). Preservation of microorganisms. In: Norris JR & Richmond MH (Eds.), Essays in Appl Microbiol. John Wiley & Sons Ltd., New York, London, Sydney, Toronto
  11. Jibiki MA, Ishibiki T, Yamashita H & Eto M (1997). A rapid and simple assay to measure flocculation in brewer's yeast. The Masters Brewers Association of the Americans Technical Quarterly 34:278-281
  12. Kamada K & Murata M (1984). On the mechanism of brewer's yeast flocculation. Agric Biol Chem 48:2423-2433 https://doi.org/10.1271/bbb1961.48.2423
  13. Pfenninger H (1993) Brautechnische analysenmethoden Band II. Selbstverlag der Mitteleuropaeische Brautechnische Analysenkommission, 3rd Edition. Auflage. Freising
  14. Quain DE & Tubb RS (1982). The importance of glycogen in brewing yeasts. The Masters Brewers Association of the Americans Technical Quarterly 19:29-33
  15. Romano P, Suzzi G & Vannini L (1994). Relationship between foaming and flocculence in Saccharomyces cerevisiae wine yeasts. Colloids Surf B Biointerfaces 2:511-515 https://doi.org/10.1016/0927-7765(94)80059-6
  16. Rouxhet PG, Mozes N, Dengis PB, Dufrene YF, Gerin PA & Genet MJ (1994). Application of X-ray photoelection spectroscopy to microorganisms. Colloids Surf B Biointerfaces 2:347-369 https://doi.org/10.1016/0927-7765(94)80049-9
  17. Sips R (1998). Quantifizierung und Identifizierung von Starterkulturen nach morphologischen und genetischen Kriterien. Ph.D. Disser. Technische Universitaet Berlin
  18. Smit G, Straver MH, Lugtenberg BJJ & Kijne JW (1992). Flocculence of Saccharomyces cerevisiae cells is induced by nutrient limitation, with cell surface hydrophobicity as a major determinant. Appl Environ Microbiol 58:3709-3714
  19. Soares EV & Mota M (1997). Quantification of yeast flocculation. J Inst Brew 103:93-98 https://doi.org/10.1002/j.2050-0416.1997.tb00940.x
  20. Straver MH, Smit G & Kjine JW (1994). Induced cell surface hydrophobicity influences of brewer's yeast during fermentation in wort. Yeast 9:527-532 https://doi.org/10.1002/yea.320090509
  21. Straver MH, Smit G & Kjine JW (1994). Isolation and partial characterization of a mannose specific agglutinin from brewer's yeast involved in flocculation. Yeast 10:1183-1193 https://doi.org/10.1002/yea.320100906
  22. Stewart RJ, Russel I & Stewart GG (1995). Characterization of affinity-purified cell wall-binding proteins of Saccharomyces cerevisiae: possible role in flocculation. American Society of Brewing Chemists 53:111-116 https://doi.org/10.1094/ASBCJ-53-0111
  23. Thorne RSW & Nohr B (1963). Some observation on the stability of a brewing yeast strain. The Brewers Digest 38:36-39
  24. Tybussek R, Linz F, Schuegerl K, Mozes N, Leonard AJ & Rouxhet PG (1994). Comparison of the continuous flotation performances of Saccharomyces cerevisiae LBG H620 and DSM 2155 strains. Appl Microbiol Biotechnol 41:13-22 https://doi.org/10.1007/BF00166075
  25. Van Hamersveld EH, Van der Lans RGJM, Caulet PJC & Luyben KChAM (1998). Modeling brewer's yeast flocculation. Biotechnol Bioeng 57:331-341
  26. Wackerbauer K, Tayama T, Fitzner M & Kunerth S (1997a). Zeitgemaesses management der Anstellhefe. Brauwelt 3:80-87
  27. Wackerbauer K, Tayama T & Kunerth S (1997b). Neurere Erkenntnisse des Einflusses der Hefelagerung auf die Gaeaktivitaet und Vitalitaet von Hefen in nachfolgenden Gaerungen. Monatsschrift fuer Brauwissenschaft 50:132-137
  28. Winkler K, Kienle I, Burgert M, Wagner JC & Holzer H (1991). Metabolic regulation of the trehalose content of vegetative yeast. FEBS Lett 291:269-272 https://doi.org/10.1016/0014-5793(91)81299-N