References
- Andersen, T., T. Briseid, T. Nesbakken, J. Ormerod, R. Sirevag, and M. Thorud. 1983. Mechanisms of synthesis of 5-aminolevulinate in purple, green and blue-green bacteria. FEMS Microbiol. Lett. 19, 303-306 https://doi.org/10.1111/j.1574-6968.1983.tb00562.x
-
Asahara, N., K. Murakami, S. Korbrisate, Y. Hashimoto, and Y. Murooka. 1994. Cloning and characterization of the hemA gene for synthesis of
$\delta$ -aminolevulinic acid in Xanthomonas campestris pv. phaseoli. Appl. Microbiol. Biotechnol. 40, 846-850 https://doi.org/10.1007/BF00173986 -
Beale, S.J. and P.A. Castelfranco. 1984. The biosynthesis of
$\delta$ -aminolevulinic acid in higher plants. II. Formation of$^{14}C$ $\delta$ -aminolevulinic acid from labeled precursors in greening plant tissues. Plant Physiol. 53, 297-303 - Bradshaw, R.E., S.W.C. Dixon, D.C. Raitt, and T.M. Pillar. 1993. Isolation and nucleotide sequence of the 5-aminolevulinic acid synthase gene from Aspergillus nidulans. Curr. Genet. 23, 501-507 https://doi.org/10.1007/BF00312642
-
Burnham, B.F. 1970.
$\delta$ -Aminolevulinic acid synthetase (Rhodopseudomonas sphaeroides). Methods Enzym. 17A, 195-204 - Choi, C., B.S. Hong, H.C. Sung, H.S. Lee, and J.H. Kim. 1999. Optimization of extracellular 5-aminolevulinic acid production from Escherichia coli transformed with ALA synthetase gene of Bradyrhizobium japonicum. Biotechnol. Lett. 21, 551-554 https://doi.org/10.1023/A:1005520007230
- Drolet, M., L. Peloquin, Y. Eccjelard, L. Cousiineau, and A. Sasarman. 1989. Isolation and nucleotide sequence of the hemA gene of Escherichia coli K-12. Mol. Gen. Genet. 216, 347-352 https://doi.org/10.1007/BF00334375
- Grimm, B. 1990. Primary structure of a key enzyme in plant tetrapyrrole synthesis : glutamate 1-semialdehyde aminotransferase. Proc. Natl. Acad. Sci. USA 87, 4169-4173
- Grimm, B., A. Bull, and V. Btreu. 1991. Structural genes of glutamate 1-semialdehyde aminotransferase for porphyrin synthesis in cyanobacterium and Escherichia coli. Mol. Gen. Genet. 225, 1-10
- Hansson, M., L. Rutberg, I. Schroder, and L. Hederstedt. 1991. The Bacillus subtilis hemAXCDBL gene cluster, which encodes enzymes of the biosynthetic pathway from glutamate to uroporphyrinogen III. J. Bacteriol. 173, 2590-2599 https://doi.org/10.1128/jb.173.8.2590-2599.1991
- Hotta, Y. and K. Watanabe. 1999. Plant growth-regulating activities of 5-aminolevulinic acid. Syokobutu-no-Kagaku-Tyou-seti (Chemical regulation of plants). 34, 85-96
- Houghton, J.D., L. Turner, and S.B. Brown. 1988. The effect of gabaculine on tetrapyrrole biosynthesis and heterotrophic growth in Cyanidium caldarium. Biochem. J. 254, 907-910 https://doi.org/10.1042/bj2540907
- Kaneko, S., T. Aoki, H. Nanato, N. Miyoshi, S. Houki, and Y. Fukuda. 1998. Intraoperative photodynamic diagnosis of human glioma using 5-ALA induced protoporphyrin IX. Iwamizawa-siritu Sougou Byouin-shi. 24, 71-79
- Kennedy, J.C., R.H. Pottier, and D.C. Pross. 1990. Photodynamic therapy with endogenous protoporphyrin IX : basic principles and present clinical experience. J. Photochem. Photobiol. 6, 143-148 https://doi.org/10.1016/1011-1344(90)85083-9
- Kim, H.S., G.G. Choi, M.N. Moon, Y.K. Yang, and Y.H. Rhee. 2002. Biosynthesis of polyhydroxyalkanoates and 5-aminolevulinic acid by Rhodopseudomonas sp. KCTC 1437. Kor. J. Microbiol. 38, 144-151
- Kuramochi, H., M. Konnai, T. Tanaka, and Y. Hotta. 1997. Method for improving plant salt tolerance. US patent 5-661-111
- Li, J.M., H. Umanoff, R. Proenca, and S.D. Russel. 1988. Cloning of the Escherichia coli K-12 hemB gene. J. Bacteriol. 170, 1021-1025 https://doi.org/10.1128/jb.170.2.1021-1025.1988
- Li, J.M., C.S. Russel, and D. Cosloy. 1989. Cloning and structure of the hemA gene of Escherichia coli K-12. Gene 82, 209-217 https://doi.org/10.1016/0378-1119(89)90046-2
- MaClung, R., J.E. Somervill, M.L. Guerinot, and B.K. Chelm. 1987. Structure of Bradyrhizobium japonicum gene hemA encoding 5-aminolevulinic acid synthase. Gene 54, 133-139 https://doi.org/10.1016/0378-1119(87)90355-6
- Mariet, J., V.D. Werf, and J.G. Zeikus. 1996. 5-Aminolevulinic acid production by Escherichia coli containing the Rhodobacter sphaeroides hemA gene. Appl. Environ. Microbiol. 62, 3560-3566
- May, B.K., I.A. Brothwick, G. Srivastava, A. Pirola, and W.H. Elliott. 1986. Control of 5-aminolevulinic acid synthase in animals. Curr. Top. Cell Regul. 28, 233-261
-
Murakami, K., Y. Hashimoto, and Y. Murooka. 1993. Cloning and characterization of the gene encoding glutamate 1-semialdehyde 2,1-aminomutase, which is involved in
$\delta$ -aminolevulinic acid synthesis in Propionibacterium freudenreichii. Appl. Environ. Microbiol. 59, 347-350 - Murakami, K., S. Korbsrisate, N. Asahara, Y. Hashimoto, and Y. Murooka. 1993. Cloning and characterization of the glutamate 1-semialdehyde 2,1-aminomutase gene from Xanthomonas campestris pv. phaseoli. Appl. Microbiol. Biotechnol. 38, 502-506
- Neidle, E.L. and S. Kaplan. 1993. Expression of Rhodobacter sphaeroides hemA and hemT genes, encoding two 5-aminolevulinic acid synthetase isozymes. J. Bacteriol. 175, 2292-2303 https://doi.org/10.1128/jb.175.8.2292-2303.1993
- Nishikawa, S. and Y. Murooka. 2001. 5-Aminolevulinic acid : Production by fermentation, and agricultural and biomedical applications. Biotech. Genet. Eng. Rev. 18, 149-170 https://doi.org/10.1080/02648725.2001.10648012
- Petricek, M., L. Rutberg, I. Schroder, and L. Hederstedt. 1990. Cloning and characterization of the hemA region of the Bacillus subtilis chromosome. J. Bacteriol. 172, 2250-2258 https://doi.org/10.1128/jb.172.5.2250-2258.1990
- Rebeiz, C.A., A. Montazer-Zouhoor, H.J. Hopen, and S.M. Wu. 1984. Photodynamic herbicide. I. Concept and phenomology. Enzyme Microbial Technol. 6, 390-401 https://doi.org/10.1016/0141-0229(84)90012-7
- Rebeiz, C.A., J.A. Juvik, and C.C. Rebeiz. 1988. Photodynamic insecticide. I. Concept and Phenomology. Pesticide Biochem. Physiol. 30, 11-27 https://doi.org/10.1016/0048-3575(88)90055-7
- Sasaki, K., S. Ikeda, Y. Nishizawa, and M. Hayashi. 1987. Production of 5-aminolevulinic acid by photosynthetic bacteria. J. Ferment. Technol. 65, 511-515 https://doi.org/10.1016/0385-6380(87)90109-9
- Sasaki, K., N. Noparatnaraporn, Y. Nishizawa, M. Hayashi, and S. Nagai. 1988. Production of herbicide, 5-aminolevulinic acid by a photosynthetic bacterium, Rhodobacter sphaeroides. Annual Reports of International Center of Cooperative Research in Biotechnology (Osaka University, Japan) 11, 375-378
- Sasaki, K., S. Ikeda, T. Konishi, Y. Nishizawa, and M. Hayashi. 1989. Influence of iron on the excretion of 5-aminolevulinic acid by photosynthetic bacterium, Rhodobacter sphaeroides. J. Ferment. Bioeng. 68, 378-381 https://doi.org/10.1016/0922-338X(89)90016-0
- Sasaki, K., T. Tanaka, Y. Nishizawa, and M. Hayashi. 1990. Production of a herbicide, 5-aminolevulinic acid, by Rhodobacter sphaeroides using the effluent waste from an anaerobic digestor. Appl. Microbiol. Biotechnol. 32, 727-731 https://doi.org/10.1007/BF00164749
- Sasaki, K., T. Tanaka, Y. Nishizawa, and M. Hayashi. 1991. Enhanced production of 5-aminolevulinic acid by repeated addition of levulinic acid and supplement of precursors in photoheterotrophic culture of Rhodobacter sphaeroides. J. Ferment. Bioengineer. 71, 403-406 https://doi.org/10.1016/0922-338X(91)90251-B
- Sasaki, K., T. Tanaka, N. Nishio, and S. Nagai. 1993. Effect of culture pH on the extracellular production of 5-aminolevulinic acid by Rhodobacter sphaeroides from volatile fatty acids. Biotechnol. Lett. 15, 859-864
- Sasaki, K., T. Tanaka, and S. Nagai. 1998. Use of photosynthetic bacteria for the production of SCP and chemicals from organic waste. In A.M. Martin (ed.), Bioconversion of waste materials to industrial products, second edition. Blackie Academic and Professional. pp. 247-291
- Sasaki, K., M. Watanabe, T. Tanaka, and T. Tanaka. 2002. Biosynthesis, biotechnological production and applications of 5-aminolevulinic acid. Appl. Microbiol. Biotechnol. 58, 23-29 https://doi.org/10.1007/s00253-001-0858-7
- Sasikala, C., C.V. Ramana, and R. Rao. 1994. 5-aminolevulinic acid : A potential herbicide/insecticide from microorganisms. Biotechnol. Prog. 10, 451-459 https://doi.org/10.1021/bp00029a001
-
Sato, K., K. Ishida, M. Shirai, and S. Shimizu. 1985. Occurrence and some properties of two types
$\delta$ -aminolevulinic acid synthase in a facultative methylotroph, Protaminobacter ruber. Agricul. Biol. Chem. 49, 3423-3428 https://doi.org/10.1271/bbb1961.49.3423 -
Schneegurt, M.A. and S.I. Beale. 1988. Characterization of the RNA required for biosynthesis of
$\delta$ -aminolevulinic acid from glutamate. Purification by anticodon-based affinity chromatography and determination that the UCC glutamate anticodon is general requirement for function in ALA biosynthesis. Plant Physiol. 86, 497-504 https://doi.org/10.1104/pp.86.2.497 - Stanley, J., D.N. Dowling, and W.J. Broughton. 1988. Cloning of hemA from Rhizobium sp. NGR234 and a symbiotic phenotype of a gene-directed mutant in diverse legume genera. Mol. Gen. Genet. 215, 32-37 https://doi.org/10.1007/BF00331299
- Tai, T.N., M.D. Moore, and S. Kaplan. 1988. Cloning and characterization of the 5-aminolevulinic acid synthetase gene(s) from Rhodobacter sphaeroides. Gene 70, 139-151 https://doi.org/10.1016/0378-1119(88)90112-6
- Takeya, H., T. Tanaka, T. Hotta, and K. Sasaki. 1997. Production methods and applications of 5-aminolevulinic acid. Porphyrins 6, 127-135
- Urban-Grimal, D., V. Ribes, and R. Labbe-Bois. 1984. Cloning by genetic complementation and restriction mapping of a yeast HEM1 gene coding for 5-aminolevulinate synthase. Curr. Genet. 8, 327-331 https://doi.org/10.1007/BF00419820
- Verkamp, E. and B.A. Chelm. 1989. Isolation, nucleotide sequence, and preliminary characterization of the Escherichia coli K-12 hemA gene. J. Bacteriol. 171, 4728-4735 https://doi.org/10.1128/jb.171.9.4728-4735.1989
- Volland, C. and F. Felix. 1984. Isolation and properties of 5-aminolevulinic acid synthetase from the yeast Saccharomyces cerevisiae. Eur. J. Biochem. 142, 551-557 https://doi.org/10.1111/j.1432-1033.1984.tb08321.x
-
Weinstein, J.D. and S.I. Beale. 1985. Enzymatic conversion of glutamate to
$\delta$ -aminolevulinate in soluble extracts of the unicellular green algae, Chlorella vulgaris. Archiv. Biochem. Biophy. 237, 454-464 https://doi.org/10.1016/0003-9861(85)90299-1 -
Weinstein, J.D. and S.I. Beale. 1985. RNA is required for enzymatic conversion of glutamate to
$\delta$ -aminolevulinate by extracts of Chlorella vulgaris. Archiv. Biochem. Biophy. 239, 87-93 https://doi.org/10.1016/0003-9861(85)90814-8