Production of 5-Aminolevulinic Acid (ALA) by Bacillus cereus 1-1

Bacillus cereus 1-1 균주의 5-Aminolevulinic Acid (ALA) 생산

  • 안경준 (서원대학교 과학교육과)
  • Published : 2007.12.30

Abstract

Bacillus cereus 1-1 strain produced 2 mM of ALA in the aerobic dark condition without any inhibitor like levulinic acid. The optimum culture conditions for the ALA production were that preculture and main culture were continued for 18 hr in TCY medium, and 16 mM of organic acids like acetic acid were added at the late log phase when the pH was 6.8. And the addition of 0.3% glucose was effective at the beginning of the main culture. ALA production was continued for more than 8 hr by the addition of glutamic acid instead of acetic acid, and was inhibited by addition of $40\;{\mu}M$ gabaculine seriously. These results confirmed that B. cereus 1-1 strain produced ALA through C-5 pathway.

Bacillus cereus 1-1 균주는 광이 없는 호기적 환경에서 levulinic acid와 같은 저해제 처리 없이도 5-aminolevulinic acid (ALA)를2 mM까지 생산하였다. B. cereus 1-1 균주는 TCY 배지에서 전 배양과 본 배양을 18시간 동안 지속하고, 배지의 pH가 6.8에 도달하는 대수기 후기에 acetic acid를 비롯한 유기산들을 16 mM 첨가하였을 때 많은 ALA를 생산하였으며, 본 배양 시작시 0.3% glucose를 첨가하는 것이 효과적이었다. Acetic acid 대신 glutamic acid를 첨가하였을 때 ALA 생산이 8시간 이상 지속되었고, $40\;{\mu}M$의 gabaculine을 첨가하면 생산이 현저히 저해되는 것으로 보아 B. cereus 1-1 균의 ALA 생산은 C-5 경로에 의함을 알 수 있었다.

Keywords

References

  1. Andersen, T., T. Briseid, T. Nesbakken, J. Ormerod, R. Sirevag, and M. Thorud. 1983. Mechanisms of synthesis of 5-aminolevulinate in purple, green and blue-green bacteria. FEMS Microbiol. Lett. 19, 303-306 https://doi.org/10.1111/j.1574-6968.1983.tb00562.x
  2. Asahara, N., K. Murakami, S. Korbrisate, Y. Hashimoto, and Y. Murooka. 1994. Cloning and characterization of the hemA gene for synthesis of $\delta$-aminolevulinic acid in Xanthomonas campestris pv. phaseoli. Appl. Microbiol. Biotechnol. 40, 846-850 https://doi.org/10.1007/BF00173986
  3. Beale, S.J. and P.A. Castelfranco. 1984. The biosynthesis of $\delta$-aminolevulinic acid in higher plants. II. Formation of $^{14}C$ $\delta$-aminolevulinic acid from labeled precursors in greening plant tissues. Plant Physiol. 53, 297-303
  4. Bradshaw, R.E., S.W.C. Dixon, D.C. Raitt, and T.M. Pillar. 1993. Isolation and nucleotide sequence of the 5-aminolevulinic acid synthase gene from Aspergillus nidulans. Curr. Genet. 23, 501-507 https://doi.org/10.1007/BF00312642
  5. Burnham, B.F. 1970. $\delta$-Aminolevulinic acid synthetase (Rhodopseudomonas sphaeroides). Methods Enzym. 17A, 195-204
  6. Choi, C., B.S. Hong, H.C. Sung, H.S. Lee, and J.H. Kim. 1999. Optimization of extracellular 5-aminolevulinic acid production from Escherichia coli transformed with ALA synthetase gene of Bradyrhizobium japonicum. Biotechnol. Lett. 21, 551-554 https://doi.org/10.1023/A:1005520007230
  7. Drolet, M., L. Peloquin, Y. Eccjelard, L. Cousiineau, and A. Sasarman. 1989. Isolation and nucleotide sequence of the hemA gene of Escherichia coli K-12. Mol. Gen. Genet. 216, 347-352 https://doi.org/10.1007/BF00334375
  8. Grimm, B. 1990. Primary structure of a key enzyme in plant tetrapyrrole synthesis : glutamate 1-semialdehyde aminotransferase. Proc. Natl. Acad. Sci. USA 87, 4169-4173
  9. Grimm, B., A. Bull, and V. Btreu. 1991. Structural genes of glutamate 1-semialdehyde aminotransferase for porphyrin synthesis in cyanobacterium and Escherichia coli. Mol. Gen. Genet. 225, 1-10
  10. Hansson, M., L. Rutberg, I. Schroder, and L. Hederstedt. 1991. The Bacillus subtilis hemAXCDBL gene cluster, which encodes enzymes of the biosynthetic pathway from glutamate to uroporphyrinogen III. J. Bacteriol. 173, 2590-2599 https://doi.org/10.1128/jb.173.8.2590-2599.1991
  11. Hotta, Y. and K. Watanabe. 1999. Plant growth-regulating activities of 5-aminolevulinic acid. Syokobutu-no-Kagaku-Tyou-seti (Chemical regulation of plants). 34, 85-96
  12. Houghton, J.D., L. Turner, and S.B. Brown. 1988. The effect of gabaculine on tetrapyrrole biosynthesis and heterotrophic growth in Cyanidium caldarium. Biochem. J. 254, 907-910 https://doi.org/10.1042/bj2540907
  13. Kaneko, S., T. Aoki, H. Nanato, N. Miyoshi, S. Houki, and Y. Fukuda. 1998. Intraoperative photodynamic diagnosis of human glioma using 5-ALA induced protoporphyrin IX. Iwamizawa-siritu Sougou Byouin-shi. 24, 71-79
  14. Kennedy, J.C., R.H. Pottier, and D.C. Pross. 1990. Photodynamic therapy with endogenous protoporphyrin IX : basic principles and present clinical experience. J. Photochem. Photobiol. 6, 143-148 https://doi.org/10.1016/1011-1344(90)85083-9
  15. Kim, H.S., G.G. Choi, M.N. Moon, Y.K. Yang, and Y.H. Rhee. 2002. Biosynthesis of polyhydroxyalkanoates and 5-aminolevulinic acid by Rhodopseudomonas sp. KCTC 1437. Kor. J. Microbiol. 38, 144-151
  16. Kuramochi, H., M. Konnai, T. Tanaka, and Y. Hotta. 1997. Method for improving plant salt tolerance. US patent 5-661-111
  17. Li, J.M., H. Umanoff, R. Proenca, and S.D. Russel. 1988. Cloning of the Escherichia coli K-12 hemB gene. J. Bacteriol. 170, 1021-1025 https://doi.org/10.1128/jb.170.2.1021-1025.1988
  18. Li, J.M., C.S. Russel, and D. Cosloy. 1989. Cloning and structure of the hemA gene of Escherichia coli K-12. Gene 82, 209-217 https://doi.org/10.1016/0378-1119(89)90046-2
  19. MaClung, R., J.E. Somervill, M.L. Guerinot, and B.K. Chelm. 1987. Structure of Bradyrhizobium japonicum gene hemA encoding 5-aminolevulinic acid synthase. Gene 54, 133-139 https://doi.org/10.1016/0378-1119(87)90355-6
  20. Mariet, J., V.D. Werf, and J.G. Zeikus. 1996. 5-Aminolevulinic acid production by Escherichia coli containing the Rhodobacter sphaeroides hemA gene. Appl. Environ. Microbiol. 62, 3560-3566
  21. May, B.K., I.A. Brothwick, G. Srivastava, A. Pirola, and W.H. Elliott. 1986. Control of 5-aminolevulinic acid synthase in animals. Curr. Top. Cell Regul. 28, 233-261
  22. Murakami, K., Y. Hashimoto, and Y. Murooka. 1993. Cloning and characterization of the gene encoding glutamate 1-semialdehyde 2,1-aminomutase, which is involved in $\delta$-aminolevulinic acid synthesis in Propionibacterium freudenreichii. Appl. Environ. Microbiol. 59, 347-350
  23. Murakami, K., S. Korbsrisate, N. Asahara, Y. Hashimoto, and Y. Murooka. 1993. Cloning and characterization of the glutamate 1-semialdehyde 2,1-aminomutase gene from Xanthomonas campestris pv. phaseoli. Appl. Microbiol. Biotechnol. 38, 502-506
  24. Neidle, E.L. and S. Kaplan. 1993. Expression of Rhodobacter sphaeroides hemA and hemT genes, encoding two 5-aminolevulinic acid synthetase isozymes. J. Bacteriol. 175, 2292-2303 https://doi.org/10.1128/jb.175.8.2292-2303.1993
  25. Nishikawa, S. and Y. Murooka. 2001. 5-Aminolevulinic acid : Production by fermentation, and agricultural and biomedical applications. Biotech. Genet. Eng. Rev. 18, 149-170 https://doi.org/10.1080/02648725.2001.10648012
  26. Petricek, M., L. Rutberg, I. Schroder, and L. Hederstedt. 1990. Cloning and characterization of the hemA region of the Bacillus subtilis chromosome. J. Bacteriol. 172, 2250-2258 https://doi.org/10.1128/jb.172.5.2250-2258.1990
  27. Rebeiz, C.A., A. Montazer-Zouhoor, H.J. Hopen, and S.M. Wu. 1984. Photodynamic herbicide. I. Concept and phenomology. Enzyme Microbial Technol. 6, 390-401 https://doi.org/10.1016/0141-0229(84)90012-7
  28. Rebeiz, C.A., J.A. Juvik, and C.C. Rebeiz. 1988. Photodynamic insecticide. I. Concept and Phenomology. Pesticide Biochem. Physiol. 30, 11-27 https://doi.org/10.1016/0048-3575(88)90055-7
  29. Sasaki, K., S. Ikeda, Y. Nishizawa, and M. Hayashi. 1987. Production of 5-aminolevulinic acid by photosynthetic bacteria. J. Ferment. Technol. 65, 511-515 https://doi.org/10.1016/0385-6380(87)90109-9
  30. Sasaki, K., N. Noparatnaraporn, Y. Nishizawa, M. Hayashi, and S. Nagai. 1988. Production of herbicide, 5-aminolevulinic acid by a photosynthetic bacterium, Rhodobacter sphaeroides. Annual Reports of International Center of Cooperative Research in Biotechnology (Osaka University, Japan) 11, 375-378
  31. Sasaki, K., S. Ikeda, T. Konishi, Y. Nishizawa, and M. Hayashi. 1989. Influence of iron on the excretion of 5-aminolevulinic acid by photosynthetic bacterium, Rhodobacter sphaeroides. J. Ferment. Bioeng. 68, 378-381 https://doi.org/10.1016/0922-338X(89)90016-0
  32. Sasaki, K., T. Tanaka, Y. Nishizawa, and M. Hayashi. 1990. Production of a herbicide, 5-aminolevulinic acid, by Rhodobacter sphaeroides using the effluent waste from an anaerobic digestor. Appl. Microbiol. Biotechnol. 32, 727-731 https://doi.org/10.1007/BF00164749
  33. Sasaki, K., T. Tanaka, Y. Nishizawa, and M. Hayashi. 1991. Enhanced production of 5-aminolevulinic acid by repeated addition of levulinic acid and supplement of precursors in photoheterotrophic culture of Rhodobacter sphaeroides. J. Ferment. Bioengineer. 71, 403-406 https://doi.org/10.1016/0922-338X(91)90251-B
  34. Sasaki, K., T. Tanaka, N. Nishio, and S. Nagai. 1993. Effect of culture pH on the extracellular production of 5-aminolevulinic acid by Rhodobacter sphaeroides from volatile fatty acids. Biotechnol. Lett. 15, 859-864
  35. Sasaki, K., T. Tanaka, and S. Nagai. 1998. Use of photosynthetic bacteria for the production of SCP and chemicals from organic waste. In A.M. Martin (ed.), Bioconversion of waste materials to industrial products, second edition. Blackie Academic and Professional. pp. 247-291
  36. Sasaki, K., M. Watanabe, T. Tanaka, and T. Tanaka. 2002. Biosynthesis, biotechnological production and applications of 5-aminolevulinic acid. Appl. Microbiol. Biotechnol. 58, 23-29 https://doi.org/10.1007/s00253-001-0858-7
  37. Sasikala, C., C.V. Ramana, and R. Rao. 1994. 5-aminolevulinic acid : A potential herbicide/insecticide from microorganisms. Biotechnol. Prog. 10, 451-459 https://doi.org/10.1021/bp00029a001
  38. Sato, K., K. Ishida, M. Shirai, and S. Shimizu. 1985. Occurrence and some properties of two types $\delta$-aminolevulinic acid synthase in a facultative methylotroph, Protaminobacter ruber. Agricul. Biol. Chem. 49, 3423-3428 https://doi.org/10.1271/bbb1961.49.3423
  39. Schneegurt, M.A. and S.I. Beale. 1988. Characterization of the RNA required for biosynthesis of $\delta$-aminolevulinic acid from glutamate. Purification by anticodon-based affinity chromatography and determination that the UCC glutamate anticodon is general requirement for function in ALA biosynthesis. Plant Physiol. 86, 497-504 https://doi.org/10.1104/pp.86.2.497
  40. Stanley, J., D.N. Dowling, and W.J. Broughton. 1988. Cloning of hemA from Rhizobium sp. NGR234 and a symbiotic phenotype of a gene-directed mutant in diverse legume genera. Mol. Gen. Genet. 215, 32-37 https://doi.org/10.1007/BF00331299
  41. Tai, T.N., M.D. Moore, and S. Kaplan. 1988. Cloning and characterization of the 5-aminolevulinic acid synthetase gene(s) from Rhodobacter sphaeroides. Gene 70, 139-151 https://doi.org/10.1016/0378-1119(88)90112-6
  42. Takeya, H., T. Tanaka, T. Hotta, and K. Sasaki. 1997. Production methods and applications of 5-aminolevulinic acid. Porphyrins 6, 127-135
  43. Urban-Grimal, D., V. Ribes, and R. Labbe-Bois. 1984. Cloning by genetic complementation and restriction mapping of a yeast HEM1 gene coding for 5-aminolevulinate synthase. Curr. Genet. 8, 327-331 https://doi.org/10.1007/BF00419820
  44. Verkamp, E. and B.A. Chelm. 1989. Isolation, nucleotide sequence, and preliminary characterization of the Escherichia coli K-12 hemA gene. J. Bacteriol. 171, 4728-4735 https://doi.org/10.1128/jb.171.9.4728-4735.1989
  45. Volland, C. and F. Felix. 1984. Isolation and properties of 5-aminolevulinic acid synthetase from the yeast Saccharomyces cerevisiae. Eur. J. Biochem. 142, 551-557 https://doi.org/10.1111/j.1432-1033.1984.tb08321.x
  46. Weinstein, J.D. and S.I. Beale. 1985. Enzymatic conversion of glutamate to $\delta$-aminolevulinate in soluble extracts of the unicellular green algae, Chlorella vulgaris. Archiv. Biochem. Biophy. 237, 454-464 https://doi.org/10.1016/0003-9861(85)90299-1
  47. Weinstein, J.D. and S.I. Beale. 1985. RNA is required for enzymatic conversion of glutamate to $\delta$-aminolevulinate by extracts of Chlorella vulgaris. Archiv. Biochem. Biophy. 239, 87-93 https://doi.org/10.1016/0003-9861(85)90814-8