Biodegradation of Phenanthrene by Transformant Trametes versicolor MrP1

구름버섯의 형질전환체 Trametes versicolor MrP1에 의한 Phenanthrene의 생분해

  • Choi, Yun-Seong (Division of Life Sciences, Research Institute of Life Sciences, Kangwon National University) ;
  • Choi, Hyoung-Tae (Division of Life Sciences, Research Institute of Life Sciences, Kangwon National University) ;
  • Song, Hong-Gyu (Division of Life Sciences, Research Institute of Life Sciences, Kangwon National University)
  • 최윤성 (강원대학교 자연과학대학 생명과학부) ;
  • 최형태 (강원대학교 자연과학대학 생명과학부) ;
  • 송홍규 (강원대학교 생명과학연구소)
  • Published : 2007.12.30

Abstract

As a model compound of PAHs (polycyclic aromatic hydrocarbons) phenanthrene has been regarded as a toxic material, mutagen and carcinogen in various animals. Biodegradation conditions of phenanthrene such as pH, temperature, shaking speed, stabilizer and cofactor of degrading enzymes were investigated with Trametes versicolor and its transformant T. versicolor MrP1 in YMG medium, minimal medium and soil microcosm. T. versicolor MrP1 can overexpress mrp gene encoding Mn-repressed peroxidase that is involved in fungal degradation. Biodegradations of phenanthrene by T. versicolor and T. versicolor MrP1 were optimally performed in conditions of weak-acid (pH 6.0), $30^{\circ}C$, shaken culture and medium containing 5 mM veratryl alcohol or tryptophan. In these optimal conditions, biodegradation of phenanthrene by T. versicolor MrP1 is 31% higher than that of wild type strain in a minimal medium for 20 days. Biodegradation of phenanthrene by T. versicolor MrP1 was also higher than that of wild type in soil microcosm. T. versicolor MrP1 can be a excellent candidate for the bioremediation of PAHs contaminated environments.

난분해성과 독성을 나타내고 인간에게 돌연변이와 암을 유발한다고 알려진 다핵방향족 탄화수소를 대상으로 분자적 방법을 이를하여 개발한 백색부후균 형질전환체와 야생형균주의 최적 생분해조건에서의 생분해능을 비교하였다. 구름버섯 Trametes versicolor와 그것의 형질전환체 T. versicolor MrP1의 phenanthrene 생분해는 veratryl alcohol과 tryptophan을 첨가한 pH 6.0의 약산성 배지에서 $30^{\circ}C$로 진탕배양할 때 최적의 생분해능을 나타내었으며 형질전환체와 야생형균주 대조군의 최적조건은 유사하였다. 조사된 최적조건의 최소배지에서 20일간 배양하였을 때 T. versicolor MrP1이 대조군에 비해 31% 더 높은 phenanthrene 분해능을 나타냈다. 실제 토양 환경을 대상으로 한 생분해 실험에서도 형질전환체가 우수한 phenanthrene 분해능을 나타났으며 이러한 결과는 형질전환체를 이용한 새로운 균주의 개발이 환경에 존재하는 난분해성 물질의 분해에 큰 기여를 할 수 있음을 보여준다.

Keywords

References

  1. Alexander, M. 1999. Biodegradation and Bioremediation, 2nd (ed.), pp. 282-287, 299-301. Academic Press, New York, USA
  2. Baborova, P., M. Moder, P. Baldrian, K. Cajthamlova, and T. Cajthaml. 2006. Purification of a new manganese peroxidase of the white-rot fungus Irpex lacteus, and degradation of polycyclic aromatic hydrocarbons by the enzyme. Res. Microbiol. 157, 248-253 https://doi.org/10.1016/j.resmic.2005.09.001
  3. Bezalel, L., Y. Hadar, P.P. Fu, J.P. Freeman, and C.E. Cerniglia. 1996. Metabolism of phenanthrene by the white rot fungus Pleurotus ostreatus. Appl. Environ. Microbiol. 62, 2547-2553
  4. Cerniglia, C.E. 1992. Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3, 351-368 https://doi.org/10.1007/BF00129093
  5. Chang, B.V., L.C. Shiung, and S.Y. Yuan. 2002. Anaerobic biodegradation of polycyclic aromatic hydrocarbon in soil. Chemosphere 48, 717-724 https://doi.org/10.1016/S0045-6535(02)00151-0
  6. Collins, P.J., J.A. Field, P. Teunissen, and A.D. Dobson. 1997. Stabilization of lignin peroxidases in white-rot fungi by tryptophan. Appl. Environ. Microbiol. 63, 2543-2548
  7. Faison, B.D., T.K. Kirk, and R.L. Farrell. 1986. Role of veratryl alcohol in regulating ligninase activity in Phanerochaete chrysosporium. Appl. Environ. Microbiol. 52, 251-254
  8. Gibson, D.T., J.R. Koch, and R.E. Kallio. 1968. Oxidative degradation of aromatic hydrocarbons by microorganisms. I. Enzymatic formation of catechol from benzene. Biochemistry 7, 2653-2661 https://doi.org/10.1021/bi00847a031
  9. Han, M.-J., H.T. Choi, and H.-G. Song. 2004. Degradation of phenanthrene by Trametes vericolor and its laccase. J. Microbiol. 42, 94-98
  10. Kayali-Sayadi, M.N., S. Rubio-Barroso, C.A. Diaz-Diaz, and L.M. Polo-Diez. 2000. Rapid determination of PAHs in soil samples by HPLC with fluorimetric detection following sonication extraction. Fresenius J. Anal. Chem. 368, 697-701 https://doi.org/10.1007/s002160000544
  11. Kim, H.-Y. and H.-G. Song. 2000. Comparison of 2,4,6-trinitrotoluene degradation by seven strains of white rot fungi. Curr. Microbiol. 41, 317-320 https://doi.org/10.1007/s002840010142
  12. Kim, Y., S. Yeo, J. Kum, H.-G. Song, and H.T. Choi. 2005. Cloning of a manganese peroxidase cDNA gene repressed by manganese in Trametes versicolor. J. Microbiol. 43, 569-571
  13. Levin, L., A. Viale, and A. Forchiassin. 2003. Degradation of organic pollutants by the white rot basidiomycete Trametes trogii. Int. Biodet. Biodeg. 52, 1-5 https://doi.org/10.1016/S0964-8305(02)00091-4
  14. Pazarlioglu, N.K., M. Sariisik, and A. Telefoncu. 2004. Laccase: production by Trametes versicolor and application to denim washing. Process Biochem. 40, 1673-1678 https://doi.org/10.1016/j.procbio.2004.06.052
  15. Reddy, C.A. 1995. The potential for white-rot fungi in the treatment of pollutants. Curr. Opin. Biotechnol. 6, 320-328 https://doi.org/10.1016/0958-1669(95)80054-9
  16. Rodgers, J.D. and N.J. Bunce. 2001. Treatment methods for the remediation of nitroaromatic explosives. Water Res. 35, 2101-2111 https://doi.org/10.1016/S0043-1354(00)00505-4
  17. Tien, K. and T. Kirk. 1988. Lignin peroxidase of Phanerochaete chrysosporium. Methods Enzymol. 161, 813-817
  18. Wilson, S.C. and K.C. Jones. 1993. Bioremediation of soils contaminated with polynuclear aromatic hydrocarbons (PAHs). Environ. Poll. 88, 229-249
  19. Won, W.D., L.H. Disalvo, and J. Ng. 1976. Toxicity and mutagenicity of 2,4,6-trinitrotoluene and its microbial metabolites. Appl. Environ. Microbiol. 31, 576-580
  20. Yeo, S., N. Park, H.-G. Song, and H.T. Choi. 2007. Generation of a transformant showing higher manganese peroxidase (Mnp) activity by overexpression of mnp gene in Trametes versicolor. J. Microbiol. 45, 213-218