DOI QR코드

DOI QR Code

Advances in MEMS Based Planar VOA

  • Lee, Cheng-Kuo (Department of Electrical & Computer Engineering, National University of Singapore) ;
  • Huang, RueyShing (Department of Electrical Engineering, National Tsing-Hua University)
  • Published : 2007.09.30

Abstract

MEMS technology is proven to be an enabling technology to realize many components for optical networking applications. Due to its widespread applications, VOA has been one of the most attractive MEMS based key devices in optical communication market. Micromachined shutters and refractive mirrors on top of silicon substrate or on the device layer of SOI (Silicon-on-insulator) substrate are the approaches trapped tremendous research activities, because such approaches enable easier alignment and assembly works. These groups of devices are known as the planar VOAs, or two-dimensional (2-D) VOAs. In this review article, we conduct the comprehensively literature survey with respect to MEMS based planar VOA devices. Apparently MEMS VOA technology is still evolving into a mature technology. MEMS VOA technology is not only the cornerstone to support the future optical communication technology, but the best example for understanding the evolution of optical MEMS technology.

Keywords

References

  1. M. C. Wu, O. Solgaard and J. E. Ford, 'Optical MEMS for Lightwave Communication,' J. Ligtwave Technol., Vol. 24, No. 12, pp.4433-4454, 2006 https://doi.org/10.1109/JLT.2006.886405
  2. J. E. Ford and J. A. Walker, 'Dynamic spectral power equalization using micro-opto-mechanics,' IEEE Photon. Technol. Lett., Vol.10, No. 10, pp.1440-1442, 1998 https://doi.org/10.1109/68.720287
  3. J. E. Ford, K. W. Goossen, J. A. Walker, D. T. Neilson, D. M. Tennant, S. Y. Park, and J. W. Sulhoff, Interference-based micromechanical spectral equalizers, IEEE J. Sel. Topics Quantum Elect. Vol. 10, No. 3, pp.579-587, 2004 https://doi.org/10.1109/JSTQE.2004.830612
  4. J. A. Walker, K. W. Goossen and S. C. Arney, 'Fabrication of a mechanical antireflection switch for fiber-to-the-home systems,' IEEE J. MEMS, Vol. 5, No.1, p.45-51, 1996 https://doi.org/10.1109/84.485215
  5. J. E. Ford, J. A. Walker, D. S. Greywall and K. W. Goossen, 'Micromechanical fiber-optic attenuator with 3 us response,' IEEE J. Lightwave Technol., Vol. 16, No. 9, pp. 1663-1670, 1998 https://doi.org/10.1109/50.712250
  6. B. Barber, C. R. Giles, V. Askyuk, R. Ruel, L. Stulz, and D. Bishop, 'A fiber connectorized MEMS variable optical attenuator,' IEEE Photon. Technol. Lett., Vol. 10, no. 9, pp. 1262-1264, 1998 https://doi.org/10.1109/68.705610
  7. C. R. Giles, V. Askyuk, B. Barber, R. Ruel, L. Stulz, and D. Bishop, 'A silicon MEMS optical switch attenuator and its use in lightwave subsystems,' IEEE J. Sel. Topics Quantum Elect. Vol. 5, No. 1, pp.18-25, 1999 https://doi.org/10.1109/2944.748100
  8. J. A. Walker, 'The future of MEMS in telecommunications networks,' J. Micromech. Microeng., Vol. 10, pp. R1-R7, 2000 https://doi.org/10.1088/0960-1317/10/1/301
  9. C. Marxer, P. Griss, and N. F. de Rooij, 'A variable optical attenuator based on silicon micromechanics,' IEEE Photon. Technol. Lett., vol. 11, No.2, pp.233-235, Feb. 1999 https://doi.org/10.1109/68.740714
  10. X. M. Zhang, A. Q. Liu, C. Lu and D. Y. Tang, 'MEMS variable optical attenuator using low driving voltage for DWDM systems,' Electron. Lett., vol. 38, no. 8, pp. 382-383, 2002 https://doi.org/10.1049/el:20020262
  11. A. Q. Liu, X. M. Zhang, C. Lu, F. Wang, C. Lu, and Z. S. Liu, 'Optical and mechanical models for a variable optical attenuator using a micromirror drawbridge,' J. Micromech. Microeng., vol.13, pp.400-411, 2003 https://doi.org/10.1088/0960-1317/13/3/308
  12. X. M. Zhang, A. Q. Liu, C. Lu, F. Wang and Z. S. Liu, 'Polysilicon micromachined fiber-optical attenuator for DWDM applications,' Sens and Actuators A, vol.108, pp.28-35, 2003 https://doi.org/10.1016/j.sna.2003.07.012
  13. C. Lee, Y.-S. Lin, Y.-J. Lai, M. H. Tsai, C. Chen, and C.-Y. Wu, '3-V driven pop-up micromirror for reflecting light toward out-of-plane direction for VOA applications,' IEEE Photon. Technol. Lett., vol. 16, pp. 1044-1046, Apr. 2004 https://doi.org/10.1109/LPT.2004.824964
  14. C. Lee and Y.-S. Lin, 'A new micromechanism for transformation of small displacements to large rotations for a VOA,' IEEE Sensors J., vol. 4, No. 4, pp. 503-509, Aug. 2004 https://doi.org/10.1109/JSEN.2004.830947
  15. C. Lee, Y.-J. Lai, C.-Y. Wu, Y.-S. Lin, M. H. Tsai, R.-S. Huang and M.-S. Lin, 'Scratch drive actuator driven self-assembled variable optical attenuator,' Jpn. J. Applied Phys., vol. 43, No. 6B, pp. 3906-3909, 2004 https://doi.org/10.1143/JJAP.43.3906
  16. C. Lee, Y.-J. Lai, C.-Y. Wu, J.A. Yeh, R.-S. Huang, 'Feasibility study of self-assembly mechanism for variable optical attenuator,' J. Micromech. Microeng. vol. 15, No.1, pp.55-62, 2005 https://doi.org/10.1088/0960-1317/15/1/009
  17. C.-H. Kim, N. Park, and Y.-K. Kim, 'MEMS reflective type variable optical attenuator using off-axis misalignment,' in Proc. IEEE/LEOS Int. Conf. Optical MEMS 2002, Lugano, Switzerland, pp. 55-56, Aug. 20-23, 2002
  18. C. Lee, 'Challenges in optical MEMS commercialization and MEMS foundry,' in IEEE/LEOS Int. Conf. Optical MEMS 2002, Lugano, Switzerland, Aug. 20-23, 2002, Oral presentation materials
  19. C. Chen, C. Lee, Y.-J. Lai, and W.-C. Chen, 'Development and application of lateral comb drive actuator,' Jpn. J. Appl. Phys., pt. 1, vol. 42, no. 6B, pp. 4067-4073, June 2003 https://doi.org/10.1143/JJAP.42.4067
  20. C. Chen, C. Lee, and Y.-J. Lai, 'Novel VOA using in-plane reflective micromirror and off-axis light attenuation,' IEEE Commun. Mag., vol. 41, pp. S16-S20, Aug. 2003 https://doi.org/10.1109/MCOM.2003.1222716
  21. C.-H. Kim, J. Park, N. Park, and Y.-K. Kim, 'MEMS fiber-optic variable optical attenuator using collimating lensed fiber,' in Proc. IEEE/LEOS Intern. Conf. on Optical MEMS 2003, Hawaii, USA, pp.145-146, Aug. 18-21, 2003
  22. A. Bashir, P. Katila, N. Ogier, B. Saadany, D. A. Khalil, 'A MEMS-based VOA with very low PDL,' IEEE Photon. Technol. Lett., Vol.16, No. 4, pp. 1047-1049, Apr. 2004 https://doi.org/10.1109/LPT.2004.824647
  23. T.-S. Lim, C.-H. Ji, C.-H. Oh, Y. Yee and J. U. Bu, 'Electrostatic MEMS variable optical attenuator with folded micromirror,' in Proc. IEEE/LEOS Intern. Conf. on Optical MEMS 2003, Hawaii, USA, pp.143-144, Aug. 18-21, 2003
  24. C. Lee, M. H. Tsai, C.-Y. Wu, S.-Y. Hung, C. Chen, Y.-J. Lai, M.-S. Lin, and J. Andrew Yeh, 'Characterization of MOEMS VOA Based on Various Planar Light Attenuation Configurations,' in Proc. of IEEE/LEOS International Conf. on Optical MEMS 2004, Takamtsu, Japan, pp.98-99, Aug. 22-26, 2004
  25. C. Chen, C. Lee and J. Andrew Yeh, 'Retro- Reflection Type MOEMS VOA,' IEEE Photonics Tech. Letters, Vol. 16, No. 10, pp. 2290-2292, Oct. 2004 https://doi.org/10.1109/LPT.2004.833964
  26. T.-S. Lim, C.-H. Ji, C.-H. Oh, H. Kwon, Y. Yee, and J. U. Bu, ' Electrostatic MEMS variable optical attenuator with rotating folded micromirror,' IEEE J. Sel. Topics Quantum Elect., Vol.10, pp. 558-562, May/June 2004 https://doi.org/10.1109/JSTQE.2004.828492
  27. J. A. Yeh, S.-S. Jiang and C. Lee, 'MOEMS VOA Using Rotary Comb Drive Actuators,' Vol. 18, No. 10, pp. 1170-1172, May 15, 2006 https://doi.org/10.1109/LPT.2006.873959
  28. Y. Y. Kim, S. S. Yun, C. S. Park, J.-H. Lee, Y. G. Lee, H. K. Lee, S. K. Yoon and J. S. Kang, 'Refractive variable optical attenuator fabricated by silicon deep reactive ion etching,' IEEE Photon. Technol. Lett., Vol.16, No. 2, pp.485-487, Apr. 2004 https://doi.org/10.1109/LPT.2003.818948
  29. C.-H. Kim and Y.-K. Kim, 'MEMS variable optical attenuator using translation motion of $45^{\circ}$ tilted vertical mirror,' J. Micromech. Microeng., vol.15, pp. 1466-1475, 2005 https://doi.org/10.1088/0960-1317/15/8/013
  30. H. Cai, X. M. Zhang, C. Lu, A. Q. Liu , and E. H. Khoo, ' Linear MEMS variable optical attenuator using reflective elliptical mirror,' IEEE Photon. Technol. Lett., vol. 17, No.2, pp. 402-404, Feb. 2005 https://doi.org/10.1109/LPT.2004.840056
  31. C. Lee, 'Monolithic-integrated 8CH MEMS variable optical attenuators,' Sens and Actuators A, vol. 123-124, pp.596-601, 2005
  32. C. Lee, 'Arrayed Variable Optical Attenuator Using Retro-Reflective MEMS Mirrors,' IEEE Photon. Technol. Lett., vol. 17, No. 12, pp. 2640-2642, Dec. 2005 https://doi.org/10.1109/LPT.2005.859538
  33. C. Lee, 'MOEMS Variable Optical Attenuator with Robust Design for Improved Dynamic Characteristics,' IEEE Photonics Tech. Letters, vol. 18, No. 6, pp. 773-775, Mar. 15, 2006 https://doi.org/10.1109/LPT.2006.871108
  34. C. Lee, 'A MEMS VOA Using Electrothermal Actuators,' IEEE J. Lightwave Technol., vol. 25, No.2, pp.490-498, Feb. 2007 https://doi.org/10.1109/JLT.2006.888257
  35. A. Godil, 'Diffractive MEMS technology offers a new platform for optical networks,' Laser Focus World, 38(5), 181-185, (2002)
  36. http://www.lightconnect.com/
  37. O. Solgaard, F. S. A. Sandejas, and D. M. Bloom, 'Deformable grating optical modulator,' Opt. Lett., 17(9), 688-690, (1992) https://doi.org/10.1364/OL.17.000688
  38. http://www.diconfiberoptics.com/
  39. http://www.santec.com/
  40. http://www.sercalo.com/

Cited by

  1. Reflective Variable Optical Attenuator using Liquid Crystals vol.51, pp.2, 2014, https://doi.org/10.5573/ieie.2014.51.2.015