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Abstract

In this paper we propose a new noise reduction algorithm for stationary and nonstationary noisy environments. Our 

algorithm classifies the speech and noise signal contributions in time-frequency bins, and is not based on a spectral 

algorithm or a minimum statistics approach. It relies on calculating the ratio of the standard deviation of the noisy 

power spectrum in time-frequency bins to its normalized time-frequency average. We 아low that good quality can be 

achieved fbr enhancement speech signal by choosing appropriate values for 4 and 6f. The proposed method greatly 

reduces the noise while providing enhanced speech with lower residual noise and somewhat higher mean opinion score 

(MOS), background intrusiveness (BAK) and signal distortion (SIG) scores than conventional methods.

Keywords^ Speech enhancement, Noise reduction, Noise

I. Introduction

The noise estimation algorithm is an essential 

component of many modern communications systems. 

Generally included as part of the noise reduction 

component, it improves the performance of the system 

by improving the speech quality or intelligibility for 

signals corrupted by noise. Since it is difficult to reduce 

noise without distorting the speech, the performance of 

any noise estimation algorithm is usually a trade-off 

between speech distortion and noise reduction [1].

The spectral subtraction (SS) method is one of the 

best-known techniques for noise reduction [2], It is 

computationally efficient and has a simple mechanism to 

control the trade-off between speech distortion and
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estimator

residual noise, although it does suffer from a notorious 

artifact known as 'musical noise” [3, 4]. The minimum 

mean square error (MMSE) [5] class of estimators and 

the Wiener estimator present a moderate computational 

load, but have no mechanism to control the balance 

between speech distortion and residual noise [3, 4], The 

common feature of all these methods is that they first 

estimate the spectrum of the noise during nonspeech 

periods. This is valid for the case of stationary noise in 

which the noise spectrum does not vary much over time. 

However, it is much less effective for nonstationary noise 

in which the noisy power spectrum varies during speech. 

In addition, voice activity detectors are generally difficult 

to tune and very unreliable for low signal-to-noise ratios 

(SNRs) [6, 7].

Several recent studies have proposed noise estimation 

techniques [6-9] designed for unknown nonstationary 

noise signals using minimum statistics (MS). The ability 
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to track varying noise levels is a pro:minent feature of 

such methods. Martin [6] proposed an algorithm in which 

the noise estimate is obtained as the minimum value of a 

smoothed power estimate of the noisy signal, multiplied 

by a factor that compensates the bias. The main drawback 

of this method is that it takes somewhat more than the 

durati야！! of the minimum-search windows to update the 

noise spectrum when the noise level increases suddenly 

[7]. Cohen [9] proposed a minima controlled recursive 

algorithm (MCRA), which updates the noise estimate by 

tracking the noise-only regions of the noisy speech 

spectrum. These regions are found by comparing the ratio 

of the noisy speech to the local minimum against a 

threshold. However, the noise estimate introduces a 

delays of at most twice that window length when the 

noise spectrum increases suddenly [7]. A disadvantage to 

most of the noise-estimation schemes mentioned is that 

residual noise is still present in frames in which speech is 

absent. In addition, the conventional noise estimation 

algorithms are combined with a noise reduction algorithm 

such as the SS and MMSE [2, 5].

In this paper, we describe a method to enhance speech 

by improving its overall quality while minimizing residual 

noise. The proposed algorithm is based on calculating the 

ratio of the standard deviation (STD) of the noisy power 

spectrum in the time-frequency bin to its normalized 

time-frequency average and a sigmoid function (NTFAS). 

This technique, which we call the “NTFAS noise reduction 

algorithm", determines that speech is present only if the 

ratio is greater than the adaptive threshold using the 

sigmoid function. In the case of a region where a strong 

speech signal is present, the ratio of STD will be high. 

This is not true for a region without a speech signal. 

Specifically, our method uses an adaptive scheme for 

tracking the threshold in a nonstationary noisy 

environment to control the trade-off between speech 

distortion and residual noise.

The estimated clean speech power spectrum is obtained 

by the modified gain function and the updated noisy power 

spectrum of the time-frequency bin. We tested the 

algorithm's performance with the

[10] database, using the segment signal-to-noise ratio 

(SNR) and ITU-T P.835 [11] as evaluation criteria. We 

also examined its adaptive tracking capability in 

nonstationary environments. We show that the performance

Fig. 1. Flow diagram of proposed speech enhancement algorithm.

of the proposed algorithm is superior to that of the 

conventional methods. Moreover, this algorithm produces a 

significant reduction in residual noise ("musical”)noise.

The structure of the paper is as follows. Section 2 

introduces the overall signal model. Section 3 describes 

the proposed noise reduction algorithm, while Section 4 

contains the experimental results and discussion. The 

conclusion in Section 5 looks at future research directions 

for the algorithm.

II. System model

Assuming that speech and noise are uncorrelated, the 

noisy speech signal 欢冷 can be represented as

x(n) = s(n) + d(n) ⑴

where 认/ is the clean speech signal and 瓜砂 is the 

noise signal. Dividing the signal into overlapping frames 

using a window function and applying the short-time 

Fourier transform (STFT) to each frame gives the time- 

frequency representation x나사")，where k is 

the frequency bin index and ； is the frame index [12]. 

The power spectrum of the noisy speech \x(k, l)\ 2 can 

then be represented as

|x(fc,z)|2 = |5(fc,Z)|2 + |P(fc,Z)|2 (2)

where \S(k, /)I 2 is the power spectrum of the clean 

speech signal and \D(k, /)| 2 is the power spectrum of 
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the noise signal. The proposed algorithm is summarized in 

the block diagram 아lown in Fig. 1. It consists of seven 

main components： window and fast Fourier transform 

(FFT), standard deviation (STD) of the noisy power 

spectrum and estimation of noise power, calculation of the 

ratio, adaptive threshold using a sigmoid function, 

separation of speech presence and absence in 

time-frequency bins and updated gain function, updated 

noisy power spectrum, and product of the modified gain 

function and updated noisy power spectrum.

III. Proposed noise reduction algorithm

The noise reduction algorithm is based on the STD of 

the noisy power spectrum in a time and frequency- 

dependent manner as follows：

X =十再]IX(紀 Z)| 2 (3)

-- 1 M
X ")= 為,l)\ 2 (4)

std0 十玄(**-云(Z))2
(5)

std샤七 g(xz-7X^)) 2 (6)

1 M
°，= M 虱 Md ,(/) (7)

o f =七 gstd /以)
(8)

3)= 쁘虫
(9)

X 絲) = 스쁘牛
(10)

frequency bin, xf(k) is the average noisy power spectrum 

for the frame index, and at and 气 are the assumed of 

noise power estimates. Fig. 2 shows the procedure for 

estimating the noise power using the noisy power 

spectrum. Eq. 9 and 10 give the ratio of the (STD) for 

the noisy power spectrum in the time-frequency bin to its 

normalized time-frequency average. In the case of a 

region in which a strong speech signal is present, the STD 

ratio calculated by Eq. 9 and 10 will be high. This is 

generally not true for a region without a speech signal. 

Therefore, we can use the ratio in Eq. 9 and 10 to 

determine speech-presence or speech-absence in the 

time-frequency bins.

3.1. Separation of speech and noise in frames 
using an adaptive sigmoid function

Our method uses an adaptive algorithm with a sigmoid 

function to track the threshold and control the trade-off 

between speech distortion and residual noise：

V (U)= [ 1+ exp (10*( Y X0- 6 ,)) ] (11)

where 饱 (Z) is the adaptive threshold using 나le sigmoid 

function and is a defined control parameter. This 

threshold 饱(z) is adaptive in the sense that it changes 

depending on the control parameter 6t.

Figure 3 shows the effect of 5t on SNR gains. The 

output SNR is calculated in a manner similar to the input 

SNR. The noise power is calculated as the power of the 

speech signal obtained by subtracting the filtered speech 

signal from the clean speech signal. Simulation results 

where a洲)is the average noisy power spectrum in the

Fig. 2. Procedure for estimating noise power using the noisy power 
spectrum
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show that an increase in the 6t parameter is good for noisy 

signals with a low SNR of less than 5 dB, and that a 

decrease in dt is good for noisy signals with a relatively 

high SNR of greater than 15 dB. The q parameter is set 

to a constant of 0.5 based on initial experiments, but a 

fixed 4 will clearly not be optimal over a wide range of 

SNRs. For example, setting 6t to 0.475 yields high SNR 

gain at a low input SNR of 5 dB； however, it also degrades 

the input speech signal at a high SNR of 15 dB. Distortion 

of the original speech signal is extremely undesirable in 

real practical environments. Second, Fig. 4 아lows the 

effect of 4 on signal distortion (SIG) scores. Simulation 

results show that the increase in 6t is somewhat beneficial 

for noisy signals with low SNRs about 5 dB and high 

SNRs of 저bout 15 dB. We can thus control the trade-off 

between speech distortion and residual noise in the frame 

index using Fig. 5 shows that the adaptive threshold 

using the sigmoid function allows for a trade-off between 

speech distortion and residual noise by controlling If a 

speech signal is present, 나會 (z) calculated by Eq. 11
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Fig. 5. Adaptive thresholds using a sigmoid function on the 
time index for car noise 5 dB
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Fig. 6, Example of noise red니otion by three enhancement 
algorithms with 5dB car noise for the sp12.wav female 
speech sample of 'The drip of the rain made a 
pleasant sound1' from the NOIZEUS database. Top 
panel： output power for car noise 5dB using the 
SSMUL method (s이id line), the MSSS method (dotted 
line), and NTFAS method (heavy line). Bottom panel : 
enhanced speech signal 니sing NTFAS

will be extremely small (ie, very close to 0). Otherwise 

if speech is absent, the value of 饱 Q) calculated by Eq. 11 

will be approximately 1. Fig. 6 is a good illustration of 

Fig. 5.

3.2. Updated noisy power spectrum using 
separation of speech-presence and absence in 
frames

The separation rule for determining whether speech is 

present or absent in a frame is based on the following 

algorithm：

七亶① > 如 (12)

成业,Z)= |X(0)|2 (13)

--  1 M 一_
야 e"、加 1) = 輙£匚冬圮代虹1) (14)

Gupd成e(")= G(m * a (15)

else

^level (W) = ^mean (知 1) (⑹

시update QM) = G(0)* (1-Q) (17)

where decision parameter《代 and constant a are initially 

0.99 and the gain function G(k,i) is 1.0. The threshold 

饱(z) is compared to the decision parameter 们.If it is 

greater than 饥,then speech is declared to be absent in 

the l frames； otherwise speech is present. Then, the l 
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frames of the noisy spectrum |x(0)F are set to 鹰点(W). 

We estimate 어爲(底z) frames of the noise power 

spectrum, and D^ean (a；,i) is calculated by averaging over 

the frames without speech. The 历二 fei) is the assumed 

estimate of the residual noise of the frames in the 

presence of speech. We refer to this value as the "sticky 

noise” of the speech—presence index. Then we represent 

GuPdatethe updated gain function in a frame index 

using the gain function and the constant a for the 

frames in which speech is absent. If the l frames are 

considered to be frames in which speech is present, then

Dmean is Set tO 瓦化,Z), 皿］ 点」M is 니S&l tO 

reduce the sticky noise of the frames of in 나le presence 

of speech. We can see the sticky noise in the the square 

region and residual noise in 나le random peak region in 

Fig. 7.

t-rame inoei

Fig. 7. Estimated noise power spectrum at car noise 10 dB 
sp12.wav of female "The drip of the rain made a pleasant 
so니nd" from the NOIZEUS database.

As a noted above, Gupdate (k,l) is the updated gain function 

in a frame index using the gain function G(k,i) and the

Frame tnaex

Fig. 8. Gain function.

Fig. 10. Updated noisy power spectrum with 10dB car noise for 
the female sp12.wav speech sample "The drip of the 
rain made a pleasant.

Fig. 11. Noisy power spectrum with 10dB car noise for the 
female sp12.wav speech sample ''The drip of the 
rainmade a pleasant.

constant i — a for the frames in which speech is present. 

Figures 8 and 9 show the gain function G(k,l) and the 

updated gain function Gupdate(k,l), respectively.

The updated noisy power spectrum of the frame index 

IK河以丄代시2 is the difference between the noisy power 

spectrum |x(咀)卩 and the frames in which speech is 

absent. 어力as shown in Fig. 10, 11 and 7,
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respectiv 이 y：

update （财）|2=|X（%）|2-应如（財 （18）

\^update （k,l）\2 = MAX（\Xupdate（k,lf, a） （19）

Eq. 18 reduces the noise of the frames in which speech 

is absent, and Eq. 19 is used to avoid negative values 

[13],

3.3. Separation of speech and noise in 
frequency bins using adaptive thresholds

In a manner parallel to that described bins in the 

previous subsection, our method uses an adaptive 

algorithm with a sigmoid function to track the threshold in 

a frequency bins：

w = [ 1 + exp（10*" /（为）一 6 /）） ] <20）

where 旳（舫 is the adaptive threshold using the sigmoid 

function in the frequency bins and § is a control 

parameter. The threshold 旳（北）is adaptive in the sense 

that it changes depending on the control parameter 8f. 

Figs. 12 and 13 show the effect of 6f on SNR gains and 

scale of the SIG. Simulation results indicate that the 

optimal value of is 0.39 for noisy signals with SNR 5 

dB and is 0.35 for noisy signal with SNR 15 dB. A fixed 

value of 5f will not be optimal over a wide range of SNRs. 

Fig. 14 shows that the adaptive threshold accounts for the 

frequency bin index by controlling 8技

Consequently, we can control the trade-off between 

speech distortion and residual noise in the frequency bins 

using 6f.
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Fig. 14. Adaptive thresholds using a sigmoid f니nction on 
the frequency bin ' 1 " "

3.4, Noise reduction using a modified gain 
function and 니pdated noisy power

The separation algorithm for determining whether 

speech is present or absent in a frequency bin is

If "Q〉加 （21）

Gnod*（知'） = 삼wpd足eU이）* a ㈣

else

%。&（鄭）=G河血（W）* （1 —a） （23）

In the same manner as for the time index, where 

decision parameter 饥 is initially 0.95, this threshold 邮k、） 

is compared to the decision parameter 4）f. If it is greater 

than。了，then speech is declared to be absent in the 

frequency bin fc； otherwise speech is present. The 

Gmodi （k,i） represents the modified gain function for the 

time and frequency bins using the gain function Gupdate（k,l）, 

the constant a, and i-a.

\S（k,lT = GmoJk,l） * \Xupdate{k,lT （24）
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Fig. 15. Modified gain function.

Table 1. Segmental SNR at white, babble and car noise.

Noise (dB) white babble car

SSMUL 5 4.96 5.89 7.08

10 8.13 9.28 8.05

15 10.05 9.89 10.35

MSSS 5 6.83 5.41 6.71

10 11.20 9.65 10.96

15 15.23 14.11 14.91

NTFAS 5 9.98 6.44 7.58

10 11.93 10.68 11,87

15 16.53 14.49 15.70

of the rain made a pleasant sound" from the NOIZEUS 
database.

256 samples. Evaluating of the new algorithm and a 

comparing it to the multi band spectral subtraction 

(SSMUL) and MS with spectral subtraction (MSSS) 

methods [6, 14] consisted of two parts. First, we tested 

the segment SNR. This provides a much better quality 

measure than the classical SNR since it indicates an 

average error over time and frequency for the enhanced 

speech signal. Thus, a higher segment SNR value indicates 

better intelligibility. Second, we used ITU-T P.835 as a 

subjective measure of quality [11]. This standard is 

designed to include the effects of both the signal and 

background distortion in ratings of overall quality [10].
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0.5Finally, the estimated clean speech power spectrum

\s(k,lf can be represented as a product of the modified 

gain function for the time-frequency bins and the updated 

noisy power spectrum of the time-frequency bins. The 

estimated clean speech signal can then be transformed 

back to the time domain using the inverse short—time 

Fourier transform (STFT) and synthesis with the 

overlap-add method. We can see the modified gain 

function Gmodi(k,i) and the updated noisy power spectrum 

\xuPdatein Figs. 15 and 16, respectively.
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IV. Experimental results and discussion

For our evaluation, we selected three male and three 

female noisy speech samples from the NOIZEUS database 

[10]. The signal was sampled at 8 kHz and transformed 

by the STFT using 50% overlapping Hamming windows of
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Time (s)

Fig. 17. Example of noise reduction with 10 dB car noise with female 
sp12.wav speech sample "The drip of the rain made a 
pleasant sound" from the NOIZEUS database for the three 
enhancement algorithms, (a) original signal, (b) noisy signal, (c) 
signal enhanced using the SSMUL method, (이 signal 
enhanced using the MSSS method, and (e) signal 은가lanced 
using the NTFAS method.
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Fig. 18. Example of noise red니Gtion with 10 dB car noise with female 
sp12.wav speech sample 'The drip of the rain made a 
pleasant sound' from the NOIZEUS database for the three 
enhancement algorithms, (a) original spectrogram, (b) noisy 
spectrogram, (c) spectrogram using the SSMUL method, (d) 
spectrogram using the MSSS method, and (e) spectrogram 
using the NTFAS method,

4.1. Segment SNR and speech signal
We measured the segment SNR over short frames and 

obtained the final result by averaging the value of each 

frame over all the segments.

Table 1 shows the segment SNR improvement for each 

speech enhancement algorithm. For the input SNR in the 

range 5-15 dB for white Gaussian noise, car noise, and 

babble noise, we noted that the segment SNR after 

processing was clearly better for the proposed algorithm 

than for the SSMUL and the MMSE methods [6,14]. The 

proposed algorithm yields a bigger improvement in the 

segment SNR with lower residual noise than the 

conventional methods. The NTFAS algorithm in particular 

produces good results for white Gaussian noise in the 

range 5 to 15 dB. Figs. 17 and 18 show the NTFAS 

algorithm's clear superiority in the 10 dB car noise 

environment.

For nonstationary noisy environments, the conventional 

methods worked well for high input SNR values of 10 and 

15 dB； however, the output they produced could not be 

easily understood for low SNR
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Fig. 19. Time domain res니Its of speech enhancement for 15 dB 
noise 5 dB car noise, 10 dB babble noise, 0 dB white noise, 
and 5 dB SNR babble noise in a nonstationary environment. 
The noisy signal comprises five concatenated s은ntenoes from 
the NOIZEUS database. The speech signal wer으 two male and 
one female sentences from the AURORA 2 corpus, (a) original 
speech, (b) noisy speech, (c) speech enhanced using SSMUL 
method, (d) speech enhanced using the MSSS method, (이 

speech enhanced using the NTFAS method.

values of car noise (5 dB) and white noise (0 dB), and 

they produced residual noise and distortion as shown in 

Fig. 19. This outcome is also confirmed by time domain 

results of speech enhancement methods illustrated in Figs. 

19 and 20. A different result is clear in Fig. 19 (a) and 

(b) for the waveforms of the clean and noisy speech 

signals, respectively, (c) the waveforms of speech 

enhancement using the SSMUL method, (d) the MSSS 

method, and (e) the proposed NTFAS method. Fig. 19 (c) 

and (d) show that the presence of residual noise at t 거 

7.8 s is due partly to the inability of the speech 

enhancement algorithm to track the sudden appearance of 

a low SNR. In contrast, panel (e) shows that the residual 

noise is clearly reduced with the proposed NTFAS 

algorithm.

4.2. The ITU-T P.835 Standard
Noise reduction algorithms typically degrade the speech 

component in the signal while suppressing the background
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Fig. 20. F「e다니ency domain results of speech enhancement for 15 dB 
car noise, 5 dB car noise, 10 dB babble noise, 0 dB white 
noise, and 5dB SNR babble noise in a nonstationary 
environment. The noisy signal comprises five concatenated 
sentences from the NOIZEUS database. The speech signal 
were two male and one female sentences from the AURORA 2 
corpus, (a) original spectrogram, (b) noisy spectrogram, (c) 
spectrogram 니sing the SSMUL method, (d) spectrogram using 
the MSSS method, (e) spectrogram using the NTFAS method.

noise, particularly under low-SNR conditions. This 

situation complicates the subjective evaluation of 

algorithms as it is not clear whether listeners base their 

overall quality judgments on the distortion of the speech 

or the presence of noise. The overall effect of speech and 

noise together was rated using the scale of the Mean 

Opinion Score (MOS), scale of background intrusiveness 

(BAK), and the SIG [10]. The proposed method resulted 

in a great reduction in noise, while providing enhanced

Ta비e 2. The overall effect (OVL) using the Mean Opinion Score 
(니。S), 5= excellent, 4= good, 3= fair, 2= poor, 1 二 bad,

Noise (dB) white babble car
SSMUL 5 1.84 247 2.79

10 3.14 2.96 3.04

15 3.57 3 49 2 91
MSSS 5 2.98 2.68 2.74

10 4.41 3.16 3.04

15 443 5.00 3.30
NTFAS 5 4.54 2.55 2.31

10 5.00 2.67 2.87

15 5.00 456 5.00

Table 3. Scale of Background Intr니siveness (BAK), 5그 not noticeable, 
4= somewhat noticeable, 3= noticeable b나t not intrusive, 2= 
fairly conspicuous, somewhat intr니sive, 1= very intrusive

Noise (dB) white babble car

SSMUL 5 3.59 221 2.82

10 3.31 2.37 3.01

15 500 1.01 179

MSSS 5 3.38 1.63 2.18

10 4 12 2 46 2.69

15 3.54 1 00 2.60

NTFAS 5 3.25 2.52 2.17

10 3.63 2.82 3.07

15 4.58 5.00 5.00

Table 4. Scale of Signal Distortion (SIG), 5=no degradation, 4=little 
degradation,3=somewhat degraded, 2=fairly degraded, 1 = 
very degraded.

Noise (dB) white babble car

SSMUL 5 1.79 2 81 3.74

10 2 69 3.26 375

15 3.15 3.37 2.87

MSSS 5 1 93 325 3.92

10 2.96 3.63 3.92

15 4.53 3.87 4.01

NTFAS 5 2.68 3.27 3 62

10 4.08 329 3.62

15 4.74 3.74 3.83

speech with lower residual noise and somewhat higher 

MOS, BAK, and SIG scores than the conventional 

methods. It also degraded the input speech signal in highly 

nonstationary noisy environments. Degradation of the 

speech signal is extremely undesirable in real speech 

recognition systems. Consequently, an automatic noise 

estimation and separation algorithm is required.

This is confirmed by an enhancement signal and ITU-T 

P.835 test [11]. The results of the evaluation are shown 

in Table 2, 3 and 4. The best result for each speech 

enhancement algorithms is shown in bolds.

V. Conclusions

In this paper, we proposed a new approach to the 

enhancement of speech signals that have been corrupted 

by stationary and nonstationary noise. This approach is 

not a conventional spectral algorithm, but uses a method 

that separates the speech-presence and

absence contributions in time-frequency bins. We call 

this technique the NTFAS speech enhancement algorithm. 

We showed that appropriate choices of dt and df produced 
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good-quality enhanced speech signal. The proposed 

method resulted in a great reduction in noise while 

providing enhanced speech with lower residual noise and 

somewhat MOS, BAK and SIG scores than the 

conventional methods. It also degraded the input speech 

signal in highly nonstationary noisy environments. 

Degradation of the speech signal is very undesirable in 

real speech recognition systems, and thus automatic noise 

estimation and separation algorithms are required.
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