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ON UNIFORM DECAY OF WAVE EQUATION OF CARRIER
MODEL SUBJECT TO MEMORY CONDITION AT THE
BOUNDARY

JEONG JA BAE AND SUK BoNG YOON

ABSTRACT. In this paper we consider the uniform decay for the wave
equation of Carrier model subject to memory condition at the bound-
ary. We prove that if the kernel of the memory decays exponentially or
polynomially, then the solutions for the problems have same decay rates.

1. Introduction

In this paper, we are concerned with the mixed problem for the Carrier
model subject to memory condition at the boundary given by

(1.1) u - M(/ |u|?dz)Au + |u|*u = 0 in Q x (0, 00),
Q
(1.2) u= % =0 on [y x (0,00),
K 2, \Ou _ (0. 00
(1.3) u +/0 g(t — s)M(/n lu(s)] dm)g(s)ds =0onT; x (0,00)
(1.4) u(0) =ug, uw(0)=1wu; on§,

where (2 is a bounded domain in R™ with C? boundary I' := 9 such that
I =TouTly, ToNT; = 0 and Ty, I'; have positive measures, v denotes the unit
outer normal vector pointing towards the exterior of Q and g € W12(0, c0) is
a non-increasing, positive function.

We note that the integral equation (1.3) describes the memory effect which
can be caused by the interaction with another viscoelastic element. Indeed,
boundary condition (1.3) means that 2 is clamped in a rigid body in the portion
Iy of its boundary and in a body in the portion I’y with viscoelastic properties.

Carrier model u” — M ( f, u*dz)Au = f was derived in [2] to model vibrations
of an elastic string with fixed ends when the changes in tension are not small.
For the global solvability of Carrier model, we refer [4, 5, 8. When I'; = 0,
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author [8] considered the global solvability for the Carrier model with nonlinear
damping |u'|*u’ and source term |ulPu.

On the other hand, when I'1 # 0, Cavalcanti et al. [3] have studied the
uniform decay of solutions of coupled linear wave equations with M (s) = 1 and
boundary conditions (1.2)-(1.3). Santos et al. [10] considered the decay rate
for Kirchhoff type wave equation with strong damping u” — M (||Vul|?)Au —
Aus+f(u) =0 on x(0,00) subject to memory condition at the boundary.
Author [1] has proved the decay rates for the coupled wave equation of Kirchhoff
type. For the global existence of Kirchhoff type model, we refer [1, 6, 9].

In this paper, we will study the existence of solutions for the Carrier model
(1.1) subject to memory condition on the boundary. Moreover, we consider if
the memory terms g decay exponentially or polynomially, then the solutions
for the Carrier model with nonlinear damping have same decay rates.

2. Statement of results

Throughout this paper we define

Vi={uc H(Q); u=0 on Iy}, (u,v):= /Qu(x)v(x)dx,

oy = [ uep@dr, Julr = [ fu@)Pds and ful = fulle

Now, we shall assume that I'p = {x € T | (z — :co) I/(.'L‘) <0}and Iy =

{z €T | (x — z0) - v(z) > 0}. Denoting by (g * ¢ fo (t — s)p(s)ds the
convolution product operator and differentiating the equation (1.3), and then
applying the Volterra’s inverse operator, we get M ([|ul2)3% = —E(lv)(u’(t) +

(k*u')(t)) on Tix(0,00). Here, the resolvent kernel satisfies k(t) + Tlo)(g/ *
k)(t) = —ﬁg’(t). Denoting by m = _g(l_O)’ we obtain on I'; x (0, o0},

0
(2.1) M(HUllz)a—Z = —m[w'(t) + k(0)u(t) — k(t)uo + (K" * u)(t)].
Now, we need the following assumptions:

(A1) Let us consider ug, u; € V N H2(Q) verifying the compatibility condi-
tions

1

(0)

(A2) The function k € W1’°°(0, o0) N W21(0,00) satisfies that there exist
positive constants m;, ¢ = 1,2, such that for all¢ > 0 and p > 1

(2.2) k(0) > 0, K'(t) < —mak(t), k"(t) > —mok'(2),
(23) or  K(0)>0, K'(t) < —mak(t)' 5, K'(t) 2 ma(=K'(£) "+,

(A3) M(-) is a nondecreasing C*(0,00) function with 0 < mg < M(s) for
every s > 0.

o
(HugH) Y o~ ;=0 on Ty
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Let us denote by (¢0¢)(t) := fo (t — s)|¢(t) — ¢(s)|*ds. Then we state our
main result.

Theorem 2.1. Under the assumptions (A1)-(As), f 0 < a < X5 if n > 3,
ora >0 if n=1,2, then problem (1.1)-(1.3) has a unique solutwn u:Q— R
such that uw € L>(0,00; VN H?(Q)), v’ € L®(0,00; V), u” € L>(0, 00; L%(Q)).
Moreover, there exist positive constants C; and Co such that

E(t) < C1E(0)exp(—Cat) or E(t) < C1E(0)(1+t)~P+D),

where
B = U@ + M) Vu)| + -
+ Tk u )2,

3. Proof of Theorem 2.1

5 @532 - m(FDu)(6)}

Without loss of generality, we consider 17, = 1. For each M > 0, we put
(3.1)

W(M,T)={v €L>®(0,T;V N H*(Q));v; €L=(0,T;V),vss €L*(Q x (0,T)),
V]| Lo 0,1y vnE2 () + 1vell Lo (o,myv) + Vel L2x 0,1y < M},
Wi (M, T)={ve W(M,T); vy € L*(0,T;L*(Q))},

Ko= max |M(s)] and K;= max |M'(s)|
0<s<M? 0<s< M2

Suppose that u,,_1 € Wi(M,T), then we associate the problem (1.1)-(1.3)
with the following problem:

(Ui'n(tt)’ W) + b (8) (Vi (), V) + (Jtm ()| “um(t), w) + (up, (t), w)r,
(32) + /0 K (t — 5)(um(s), w)r, ds + k(0)(tm (£), w)r,

= (k(t)UOmaw)rw w € Vi,
(3.3)  um(0) =up, ul,(0)=uy,

where b, (t) = M(||um—1(t)||?), then we find u,, € W1(M,T) which satisfies
the problem (3.2)-(3.3). Using usual Faedo-Galerkin’s approximation and mul-
tiplier method, we can obtain the following proposition.

Proposition 3.1. Under the assumption of Theorem 2.1, there exist positive
constants M and T and the recurrent sequence {un,} C W1(M,T) defined by
(3.2)-(3.3).

Proposition 3.2. Under the assumption of Theorem 2.1, there exist positive
constants M and T such that the problem (1.1)-(1.3) has a unique weak solution
u € Wi(M,T). On the other hand, the linear recurrent sequence {um} defined
by (3.2)-(3.3) converges to the solution u strongly in the space W1(T) = {v €
L>(0,T;V) | v/ € L*(0,T; L3(Q))}. Furthermore, we have

wm = ull Lo o,75v) + 1ty — W' || Loo(o,m522(0)) < CET,  for all m,
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where kr < 1 is some positive constant and C is a constant depending only on
T, Up, Up.

Proof. First, we note that Wi (T) is a Banach space with respect to the norm
vllw, () = lvllzee,75v) + 1V || oo (0,7;22(0))- [7])- We shall prove that {u,} is
a Cauchy sequence in W;(T'). Consider z,, = t%my1 — Um. Then z,, satisfies
the variational problem

(2 (1), W) + brn 41 (V2 (£), VW) + (b1 () = bin (8)) (V) Vaw)
(34)  +H(umt1 (O um+1(t) — |um (8)|*um (t), w) + (21 (2), w)r,

+/ K (t — s)(zm(s), w)r,ds + k(0)(zm(t), w)r, =0, weV,
(35) zm(0) = 2. (0) =0 in V.
Now, we can write
d / 2
(3.6)  — Eam(t) + ll2m (B)IIF,
= %binﬂ(t)llvzm(t)ll2 + (lum ()" um (t) — [m+1 ()| “Um+1(2), 2 (2))

+(bm(t) - bm+1(t))(vum(t)a vz;n(t)) - /0 k/(t - 5)(Zm(8), z;n(t))lﬁds’

where Eom (t) = 3{[|27,(8)[> +k(0)|[zm ()|, +bm+1(2)| Vzm(£)]?}. From mean
value theorem, we obtain

[bm+1(2) — bm ()] 1M ([lum @)]I*) = M([lum-1()]1%)]

[lum ()12
M d
< /” M (€)|dg

Um—1(t)}2
K1 ([[um—1 + lum(®) DI zm-1 ) lw, (1)
2M K1 || 2m—1()lwy (1)

and so Green identity and boundary condition (2.1) imply
|(brt1(2) = b (1)) (Vi (£), Vi (1))
O,

< 2MEKillzm-1()llws (@) | Aum @)l 2 ()] + 7= @)l 127 () ]
< MPKa[llzm—1 (O, ¢y + Iz ()117]

INIA

_ Oum
+ 2¢ 1M2Kfllzm—1(t)II3V1(T)IIa—V(t)II%1 + €llz, 12,

< MK zm-1 ()13, () + lzm @17 + ell 2 (IR,
+ 4(emd) T MAKT |l zm-1 (D, ()

X (JRO)* + IR @)1 (0,00) + 1Kt 1310,00))-
Also, we have

([ ()% (£) = [t 41.()|*Umr1(2), 200 (2))
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3.7) < Cilllum@15n + lume1 @l zm @) 22, 127, @)
< CMA([Vam@®))? + [z @)

Thus we arrive at

%@MUHLJ%%@%

< Onest Ol cry + W losooor [ 1K= )llam(s)E, s
(38) (G + MME+ MO + [Tz (®)
here
Cor ke, = MK [1+4(emd) " M2 K1 ([R(0)[* + [|6(2) 17 o0 (0,00) + 1K @)II71(0,00))]-
Integrating (3.8) over [0,¢], choosing ¢ > 0 sufficiently small and employing
Gronwall’s lemma we obtain

t
(3.9) &waéwmm&@swwwaw%@p

~ 2max{1,m3 }(3 +M)MK;+C Ma)+7—1 lix'112 IT
where kr = CM,KlTe[ {1mg }(3 1z 2k{0)e rlE.=)'"  that
s,

(3.10) NzmOllw, () < krllzm—1)lwy (1),

where k7 = v/2[min{1,mq, k(0)}]"2 (kr)z < 1 Hence
km
(3.11) [wm+p = wmllws(ry < llur — uO||w1<T)ﬁ for all m, p.

It follows from (3.11) that {u,,} is a Cauchy sequence in W1 (T'). Therefore
there exists u € W1(T') such that

(3.12) Um — u  strongly in Wiy (T).

We also note that u,, € Wi(M,T), then from the sequence {u., } we can deduce
a subsequence {u,,} such that

(3.13) Um, — u weak star in  L™(0,T;V),

J
m; — 4 weak star in  L>(0,T;V),

14

m; — U’ weak star in  L°(0,T; L*()),

u.
u

where v € W(M, T). The above convergence is sufficient to pass to the limit in
the linear terms of (3.2). Taking into account the continuity of trace operator
Yo : HY(Q) — H*(T), we have

Um, > u in L*0,T;L*Iy)),

Up,, = in L*0,T; L*(Ty)).
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Sobolev imbedding and (3.13) imply that for every ¢ € L?*(Q),
[(Jum; () wm,; (t) = [u(t)|*u(t), 9)]|

Cllum,; (O)llan + lu@l[an)llum; @) — u@l 22, #@)]]
20M|lum; (t) = u(t)lwy 1y l6@)]| = 0 as j — oo.

Now, we notice that

/0 b (8) (Vum (2), Vo (2)) — b(&)(Vau(t), Vo(t))dt

A A

T
= /0 B (£) (Vi (£) — Vu(t), Vo(2)) + (b (2) — b(1))(Vas(t), Voo(t))dt

< C1[Ko + 2K M||um — ullw, (1) |l 220,751y for all v e LY0,T; HY).
Thus we can pass to the limit with m = m; — oo to obtain
v = M(|u|)Au + |u/*u =0 in D'(0,00; L3(Q)).
Since u, u” € L% (0, 00; L#(Q2)),
v — M(|u)Au+ |u/*u =0 in L2 (0,00; L3()).

Returning to the approximate problem, making use of Green formula, we have
Ou
ov
Since u’, u, k' *u € L2, (0,00; H3(T)),

M(||ul|®) 5= + o/ (t) + k(0)u(t) — k(t)uo + (¥ *u)(t) = 0 on D'(0, 00; H™ 3 (T'1)).

Ml 32 +4/ () + k(O)u(t) — k(t)io + (K xu)(2) = 0 on L, (0,001 HH(T)).

This completes the proof of existence of solutions in Theorem 2.1. The unique-
ness of solution is proved by applying the similar course to Proposition 3.2. We
omit it. O

4. Uniform decay
4.1. Exponentially decay

In this section we shall show the asymptotic behavior of solutions for the
problem (1.1)-(1.3) when the resolvent kernel k decays exponentially. Let us
assume k satisfies the condition (2.2). Note that the condition (2.2) implies
k(t) < k(0)e=™* for all ¢ > 0. At first, we begin with the following Lemma.

Lemma 4.1 ([3]). Let f be a real positive function of class C*. If there exists
positive constants yo, v1 and co such that f'(t) < —yof(t) +coe™ "%, then there
exist positive constants v and ¢ such that f(t) < (f(0) + c)e "%

Now, we define

(4.1) (kOu)(t) = / (e — ) u(t) — ur) |3, dr,
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and define energy by

E(t) = 1[lIU'( DI + bV |? = m1 (K D) () + m k() |lu(®)|7,]
«2) @3
where b(t) = M (J|u(t)||?). Then we have

GEO < VOINuO - Do), + L k0P wol?,

(43) ~ S KDu)(©) + TR Olu)?,.
For w € W1 (M, T), we get

GEO < 2K b Va0l - Ll O, + kO fuol,
(49) (R D)) — k() a1,
Let us define the perturbed modified energy by

N@E) = @O +b@)IVa)|? + lu@®)]233,

bt) = /Q - Va(t) + (5 — O)u(o)(t)de,

where 6§ is a small positive constant.
Consider the following operator

(k) (t / k(t — 8)(h(t) — h(s))ds.

Lemma 4.2. For any strong solution of the problem (1.1)-(1.3), we get for
small € > 0

C/ (' @O + [k (®)u®)? + (k' Ou)(t)? + |k(t)uo|*)dT
(45) Y () (1 - 20— em=)b(t) /Q Vu(t)2de.

Proof. From the equation (1.1) and integration by parts, we have

2o < g /P () (O ar -0 /Q o (t) Pd

—(1—0)b() / |Vu(t)|2dx—%b(t) /F (m - )| Vu(t)2dT
+h(2) —{m Vu(t) + (3 — Ou(t)}dr

- [ @l utolm - vu(o) + (2~ oputolds,
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where we have used [, (m-v) %4 12dT < 0 and u|r, = 0. Taking 8 small enough,
we get

d
prid0)

_ON(t) - (1— 20)b(t) /Q Vu(t) e+ /r (m - )l (£)[2dT

IA

~ Ly /F (m- V)IVue) T + (1) /F 1 gi:{m Valt) + (5 - O)u(t)}dr
_ /Q [u(®)Fu®)lm - Fut) + (3 — 28)u(t)lde.

Applying Young and Poincaré inequality, we have for € > 0,

/F 22 {m- Vu(t) + (3 — O)u(t)}dr
< ebft) [ {Im- Vu(O) + (5 — 6)2u(t)P}dr + Cu(e)olt) / |32 par

81
Cob(t) [ ()T PdT + N + € o) [ (5P

Also, we get

| sl um - Vu(tide < max o~ zolI V@) )L
Gagliardo-Nirenberg inequality implies
lu(®)lI5E 1) < Call Vul®)] D% ju(e) | 57507,
where 6; = (—ﬁm' Thus we have

IN

(4.7) /Q ()| u(t)m - Vu(t)de

(o 1)(1-6
< Cgl;lgg”;z—xonnvu(t)”lﬂ +1)91|| ()||(a+ )(1-61)

IA

02 02 «@ -6
el Vu(®)? + 22 max|le — 2o )| Vu(e) [+ V% u() 555 VO~

IA

el Vu@l® + Z—f[rfgg e = 2ol[PIVu(®) 2D u(t)| 35T N ()
< VU + Ca(©BO)EN ().

Thus we obtain

Zu(t) < ~6(1- Cle,B)N () — (1—20 — em™ )b(2) /Q Vu(t)2dz
! 2 _ 1 m- v u 2
+/F1(m-u>|u (t)[2dr "(t)/n( )| Vu(t) 2T

+€C2b(t) / m - v)|Vu(t)|2dT + C1(e)b(t) / ]——}2d1“
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where C(e,8) = 3{eC2+Cy(€)E(0) % }. Choosing small initial data with Cle, 0)
< 2 in the above inequality. Then we have

9
Ezp(t) < 5N - (1 — 26 — emg )b(2) /|Vu )|2dx
(4.8) +C5/ ! (¢ |2+|8“| dr.

Now, we note that the boundary condition (2.1) can be written as

(4.9) b(t)g% = —[u'(t) + k(t)u(t) — k(t)uo — (k'Gu)(t)] on T; x (0, 00).

Taking into account the above estimates with boundary conditions, we get
Lemma. a

On the other hand, using Hélder’s inequality, we get
(4.10)  |(K Ou)(B)I* < (K(t) — k(0))(K'Du)(t) < —k(0) (k') (t).
Thus we have
%d)(t) < C g (W' @) + |k(©)u(®)]* = k(0)(K'Du)(t) + |k(t)uo|*)dT
(4.11) !
—gN(t) (1= 26— em31yb(t) /Q Vu(t)d.

We choose a positive € and 72 with K; M2 < %zoﬁ_—%i and € < mo(1—26).
Then let us introduce the Lyapunov functional L(t) := NE(t) + () with
N > 0. Then we have

%L(t) < —gE(t) —[1-20—emy! — 2K M?*my? / |Vu(t)dx
@ Rz Y ok o
(2 = T () o), + (€ - P o2,

+(M + O)|k(t)|? lJuolZ, -

Taking N large with N > 7, then from (2.3), we have

GLO < 2B + 2N (L kO ful?,)
< =280 + 2N (L k() o 2, e

9
< —;B@M)+ 2NE(0)e™2mt,
Using Young inequality and taking N large we find that

(4.13) gE(t) < L(t) < 2NE(t),
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and so we get

d o —2mat
il < mat
ZL(t) < — L)+ 2NE(0)e

Thus from Lemma 4.1, we have

L(t) < (L(0)+ C)e™"* for some positive constants C, 7.

Considering the inequality (4.13), we get the decay estimates of energy.

4.2. Polynomially decay

Now, we consider the uniform decay rates when the resolvent kernel k decay
polynomially like (1 +¢)~P. Let us assume that k satisfies the condition (2.3).
To obtain our result, we use the following Lemma.

Lemma 4.3 ([3]). Let f > 0 be a differentiable function satisfying

’ C1 1+1 C2

for some positive constants c1, ¢z, a and B such that 8 > a + 1, then there
exist a positive constant ¢ such that

ft) < mf(o), £>0.

Lemma 4.4 ([3]). Let u = ¢ be a solution of problem (1.1)-(1.3). Then for
p>1,0<r<1andt >0, we have

T)(p+1

(/ (|k/|D¢)(t)dF) 1+li:) 1)
Ty
t L +2
< 2(/0 Ik’(s)Irds“¢||2L°°(0,t;L2(1"1)))W /Fl(lk/‘%ﬁmqsl)(t)dr,
( (|K'|O¢s) ()dT) 551

t 1 +2
< /O 16(5) 2 oy 5 + 6 ]2a(r,) 7 /P (K15206)(1)dr

Using (4.4) and conditions on k, we get

d N Mmma 1
ZBM) < DI, + ZkOPluol?, - ZE (k) D)
1m 1 -
—2—2—116(75)”? lu()lIE, + 21 M>mg b() [ Vu(t)]|*.
Using Holder’s inequality and condition on k, we get

(4.14)
(k' ou)(t)[? < /0 (=K(s))P1ds - (—K)FH DOu)(t) < C((—K)FH0u)(2).
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Thus we have

d
a7 (t)

INA

5N +C [ (WO + KOO + Kol + () D )ar
—(1—-20 ~emg?) /Wu (t))*dz.

Also, for large N > 0, Lyapunov functional L(t) satisfies
d
2 < —gN(t) + 2Nk (8)2E(0) — %Af (=) 553 Ou) (t)dr.
, r

Condition on k and Lemma 4.4 imply

ZL) < —cL(0)"FT L) T 4 2N k(1) E(0),

Thus from Lemma 4.3, we have

L(t) < ¢ L(0) for some C > 0.

(14¢)ptt (
Therefore, (4.13) yields

C
B(t) < g BO)

This completes the proof of Theorem. .
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