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CONVERGENCE PROPERTIES OF HYPERSPACES

GIUSEPPE D1 Ma1o*, L. D. R. Ko¢Nvac!, AND TsuguNorl NOGURA
b )

ABSTRACT. In this paper we investigate relationships between closure-
type and convergence-type properties of hyperspaces over a space X and
covering properties of X.

Introduction

Let X be a Hausdorff space. By 2% we denote the family of all closed subsets
of X. If A is a subset of X and A a family of subsets of X, then we write

A°=X\Aand A= {A°: A e A},
A" ={Fec2X . FnA#0p},
At ={Fe2X . FcA}.

Let A be a subset of 2% closed for finite unions and containing all singletons.
We mention three important special cases:

1. A is the collection CL(X) = 2% \ {0};

2. A is the family K(X) of all non-empty compact subsets of X;

3. A is the family F(X) of all non-empty finite subsets of X.

Given A C 2%, the associated upper A-topology, denoted by A*, is the
topology whose base is the collection

{(D9)* : D e A} U {2%).

For A = CL(X) we have the well-known upper Vietoris topology V*, for
A =K(X) we have the extensively studied upper Fell topology (or co-compact
topology) F7, and for A = F(X) we have the topology that we call Z*-topology.
The lower Vietoris topology V™ is generated by all the sets U™, U C X
open.
The A-topology, denoted 7a, is defined by 7a = AT V V™. Recall that
Ta-basic sets are of the form

(DYt N (Mi<mVi™), D€ A, V4,...,V,, open in X.

Received January 24, 2006; Revised November 1, 2006.

2000 Mathematics Subject Classification. 54B20, 54A20, 54D20.

Key words and phrases. selection principles, hyperspace, w-cover, k-cover, y-cover, Yg-
cover, filter-Fréchet, strongly filter-Fréchet, set-Fréchet, strongly set-Fréchet, o;-properties.

*Supported by MURST - PRA 2000.

tSupported by MNZZS RS.

(©2007 The Korean Mathematical Society
845



846 G. DI MAIO, LJ. D. R. KOCINAC, AND T. NOGURA

The most popular among A-topologies are the Vietoris topology V =Vt VvV~
and the Fell topology F = F* v V= [7]. We also consider the topology Z =
FARVAV

Ta-topologies are a large and significant class of hyperspace topologies and
were intensively studied in the last decades (see [19], [5]).

Let us fix some terminology and notation.

Let A and B be sets whose elements are families of subsets of an infinite set
X. Then (see [21], [10]):
S1(A, B) denotes the selection principle:

For each sequence (A, : n € N) of elements of A there is
a sequence (b, : n € N) such that for each n b, € A, and
{bn : n € N} is an element of B.

Stin(A, B) denotes the selection hypothesis:

For each sequence (A4, : n € N) of elements of A there is
a sequence (B, : n € N) of finite sets such that for each n
B, C Ay and |, ¢y By is an element of B.

For a space X, a collection A C 2% and a point z € X we consider the
following sets A and B:

e O: the collection of open covers of X;

e (): the collection of w-covers of X

e K: the collection of k-covers of X;

e I': the collection of y-covers;

e T';: the collection of yi-covers;

e T'a: the collection of ya-covers;

o O, theset {AC X\ {z}:7¢e A};

e 3. the set of all nontrivial sequences in X that converge to z.

Let us recall that if A C 2%, then an open cover U of X is called a A-cover
if each D € A is contained in an element of I/ and X does not belong to U (i.e.
the cover is not trivial). F(X)-covers (resp. K(X)-covers) are called w-covers
(resp. k-covers). An open cover U of X is said to be a ya-cover if it is infinite
and for each D € A the set {U € U : D ¢ U} is finite. ~yg(x)-covers (resp.
Yr(x)-covers) are called -y-covers [8] (resp. 7k-covers [12]). Observe that each
infinite subset of a ya-cover is still a ya-cover. So, we may suppose that such
covers are countable.

We also suppose that all spaces are infinite and Hausdorff.

A number of results in the literature show that there is a nice duality between
closure properties of hyperspaces and covering properties of the basic space,
i.e. the closure properties of hyperspaces 2% can be characterized by covering
properties of X (see, for instance, [3] [9], [11], [12], [4]).

In this paper we show that when the space of closed subsets of a space X is
endowed with a A1-topology or TA-topology some of its convergence properties
can be expressed in a transparent way by covering properties of X.
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In Section 1 we consider Arhangel’skii’s «;, 1 = 1,2, 3,4, properties and show
that in hyperspaces the properties as, a3 and a4 coincide. Section 2 contains
some results related to sequential-type properties of hyperspaces.

1. a;-properties in hyperspaces

In this section we investigate a; properties of AT hyperspace topologies.
These properties were introduced by Arhangel’skii in [1] (in a bit different
formulations) as follows.

A space X has property o;, i = 1,2, 3,4, if for each x € X and each sequence
(o : m € N) of elements of ¥, there is a o € ¥, such that:

ay: for each n € N the set o, \ 0 is finite;

ag: for each n € N the set 7, N o is infinite;

ag: for infinitely many n € N the set 0, N o is infinite;
ay: for infinitely many n € N the set o, N ¢ is nonempty.

Evidently,
] = Qg = (3 = (4.

A specific behavior of these properties in topological groups was investigated
in [23], [18], and in function spaces Cp,(X) in [22] and [20]. We prove that in
some hyperspaces the last three properties coincide.

Theorem 1. For a space X and a collection A C 2% the following statements
are equivalent:

(1) (2%,A%) is an ay-space;

(2) (2%, A%) is an a3-space;

(3) (2%, AY) is an ay-space;

(4) For each E € 2%, (2%, A%) satisfies S1(Zg, Xg);
(5) Each open set Y C X satisfies S1(Ta,Ta).

Proof. The implications (1) = (2) = (3) are trivial. So, we prove the remaining
implications.

(3) = (4): Let (0, : n € N) be a sequence of elements of ¥ g for some
E € (2%,A*). Assume that for each n € N, o, = (F,m : m € N). For all
n,m € N define S, ;p = Fi,; U Fo U+ - U Fy, 1. Then each Sy, is a closed
subset of X and for each n the sequence s, = (Sp,m : m € N) belongs to £k as
can be easily verified. Apply now (3) to the sequence (s, : n € N} of elements
of ¥g. There is an increasing sequence ny < ng < --- in N and a sequence
8 = (Sn,m,; : © € N) € Zg such that for each i € N, Sy, 1, € Spn,. Then:

(2) If Spyme = Uy Fimy, then for each i < ny put T; = Fj 1,5
(1) j>1and Sn,\ ) m,.y = Uit Fim,.., then for each i with n; <i <
njp1 put T = F
Note that for each i € N, T} € 0;. The sequence t = (T}, : n € N) is an element
of £ and is a selector showing that (2%, A1) satisfies (4).
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(4) = (5): Let Uy : n € N), U = {Up.m : m € N}, be a sequence of
countable ya-covers of an open set Y in X. If we put for eachn € N, §,, = U<
we get a sequence (S, : n € N) of sequences in 2% such that each S, A*-
converges to Y°, i.e. S, € Ly.. Indeed, fix n and let W = (D°)*, be a basic
A*-neighborhood of Y. Since U, is a ya-cover of Y, D C Y and D € A,
there is mo € N such that D C U, ,, for each m > my. It follows that for each
m > mo we have Us . € W, ie. S, AT-converges to Y°. As (2%X,A%) is an
S1(Xye, Zy<)-set there is a sequence S = (S, : n € N) in 2X At-converging
to Y and such that for each n, S, € S,. Then (S5 = Uy, : n € N) is
a sequence such that for each n, U, ,,, is an element of U,,. We claim that
{Un,m,, : n € N} is a ya-cover of Y. Indeed, let D € A, D C Y. Since S A™*-
converges to Y°, it follows that the A*-neighborhood (D¢)* of Y contains all
but finitely many elements S,,. It implies that D is a subset of all but finitely
many elements Uy, ,,,,..

(5) = (1): Let E € (2X,A") and let (0, : n € N) be a sequence of
elements of Y. Suppose that for each n € N, o, = (F,,n : m € N). For
all n,m € N define S, ,, = F1,,, UF,, U---U F,,,. Then each Spm is a
closed subset of X and for each n the sequence s, = (Sn,m : m € N) belongs
to Xg. For each n € N, Uy, := {(Sp,m U E)° : m € N} is a ya-cover of the
open set £ C X it is easily verified. By (5), there is a sequence (U, : n € N)
such that for each n € N, U, € U, and {U, : n € N} is a ya-cover of E°.
Let for each n, U, = (S, m, U E)°. By taking subsequences if necessary we
may suppose that for each n, m, < mp41. Note that since {U, : n € N}
is a ya-cover of E¢, we have (S, m, : n € N) € ©g. As a consequence,
o=(Fym:m>m;i>ninec N) is an element of £g which has infinite
intersection with each o,, hence witnesses for the sequence (o, : n € N) that
(2%, A*) satisfies asy. O

Let us observe that one can prove the following result:

Remark 2. For a space X and a collection A C 2%, the statement (1) implies
(2):

(1) For each F € 2%, (2% 7A) satisfies $;(Zg, Zg);

(2) Eachopenset Y C X satisfies S;(T'a,'a) (equivalently, St (T'a,Ta)).

Proof. 'The proof of (1) = (2) is similar to the proof of (4) = (5) in the previous
theorem. A change is that we have to prove that each S,, Ta-converges to Y.
Indeed, fix n and let W = (D°)* N (N;<xV,”) be a basic Ta-neighborhood of
Y¢. Since U, is a ya-cover of Y, D C Y and D € A, there is mg € N such
that D C Up,, for each m > mg. On the other hand, from Y*° € V,~ for each
t <k and Uy, D Y° for each m € N, it follows that for each m > mg we
have Uy ,, € W, i.e. S, Ta-converges to Y°. Then use the fact that (2%, 74)
is an S1(Zye, By )-set, find a sequence S = (S, : n € N) in 2% 7a-converging
to Y and such that for each n, S, € S,, and show, in the same way, that
{S¢ :n € N}isaya-cover of Y.
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The fact that Y satisfies S;(I'a,T'a) if and only if it satisfies Sgin(Ta,Ta)
is proved by a small modification of the proof of Theorem 5 in [12], or of the
proof of Theorem 1.1 in {10]. U

Two important special cases are consequences of Theorem 1.

Corollary 3. For a space X the following statements are equivalent:
(1) (2%,F*) is an ay-space;
(2) Each open setY C X is an S1(Tk,T'y)-set.

Corollary 4. For a space X the following statements are equivalent:
(1) (2%,Z7%) is an a4-space;
(2) Each open set Y C X is an S1(T,T)-set.

Recall that a space X is said to be Fréchet-Urysohn (briefly, FU) if for each
z € X and each A € Q, there is a sequence (z, : n € N) in A belonging to .
X is strictly Fréchet-Urysohn (SFU) if for each z € X it satisfies the selection
principle S (2, X5).

According to (8] a space is said to be a ~-set if it satisfies the selection
principle S;(22,T'). In [12] spaces satisfying the selection principle S;(K,T%)
were called ~;-sets. It was also shown in [12] that for a space X, (2%,Z%)isa
Fréchet-Urysohn space if and only if each open set Y C X is a v-set, and that
(2%, F*) is a strictly Fréchet-Urysohn space if and only if each openset Y C X
is a y;-set. Because I' C Q and ['y C K, it follows that S;(Q,T) C S;(T,T)
and S; (K, T'x) C S1(Tk, T'x) . So from Corollary 4 and Corollary 3 we have the
following proposition.

Proposition 5. For a space X the following statements hold:
(1) If (2%,Z%) is a Fréchet-Urysohn space, then it is an as-space;
(2) If (2%,FT) is strictly Fréchet-Urysohn, then it is an aq-space.

We consider now the a; property in hyperspaces.

Theorem 6. For a space X and a collection A C 2% the following are
equivalent:

(1) (2%,A%) is an a;-space;

(2) For each open set Y C X and each sequence (U, : n € N) of ya-covers

of Y there is a ya-cover U of Y intersecting each Uy, in all but finitely
many elements.

Proof. (1) => (2): Let Y be an open subset of X and let (4, : n € N) be a
sequence of ya-covers of Y. Put for each n € N, §,, = US. We get a sequence
(Sn i € N) of elements of Ty« in (2%, A*). As (2%, AT) is an a;-space there
is a sequence S in 2% which A+-converges to Y and such that for each n,
Sn\ S is a finite set. Set U = §¢. Then U is a ya-cover of Y which shows that
(2) holds.

(2) = (1): Let (S, : n € N) be a sequence of sequences in 2% which all
A*-converge to E € 2X. 1t is easy to see that for each n € N, U, = {(SUE)® :
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S € 8,} is a ya-cover of the open set E° C X. By (2), there is a sequence
(Vn : n € N) such that for each n € N, V,, C Uy, Uy, \ V,, is a finite set,
and V = |, oy Vn is @ ya-cover of E°. The sequence S = {A: (AUE)® € V}
intersects each S, in all but finitely many elements and A*-converges to E. 3

2. FU-type properties

In this section we consider hyperspaces endowed with the Fell topology and
investigate several FU-type properties.

Recall that a space X is sequential if for each non-closed set A C X there
are a point € X \ A and a sequence (z,, : n € N) in A that belongs to X,. X
has countable tightness if for each x € X and each A € Q, there is a countable
element B € Q) such that B C A.

E. Reznichenko introduced a property close to the Fréchet-Urysohn property
and called the Reznichenko property in [13] and [14] (somewhere called also the
weak Fréchet- Urysohn property). A space X has the Reznichenko property if
for each z € X and each A € Q, there is a sequence (B, : n € N) of pairwise
disjoint, finite subsets of A such that each neighborhood U of z intersects all
but finitely many sets B,.

In 1983, E. Pytkeev considered the following property called now the Pytkeev
property (see, for example, [11]). A space X has the Pytkeev property if for
each + € X and each A € Q, there is a sequence (B, : n € N) of infinite,
countable subsets of A such that each neighborhood U of x contains some B,,.

Recall that a filter-base on a space X is a non-empty family F of subsets of
X satisfying: (i) 0 ¢ F, (ii) if A, B € F, then there is C € F with C C AN B
(see [6]).

The following four generalizations of the Fréchet-Urysohn property were
introduced in [2].

A space X is said to be:

FF: filter-Fréchet if for each z € X and each A € Q_ there is a sequence
(Fn : n € N) of filter-bases on A such that:
(FF1) For each n € N, there is an F,, € F,, such that z ¢ F,;
(FF2) For each neighborhood U of x there is ng € N such that n > ng
implies F,, C U for some F,, € F,.

SFF: strongly filter-Fréchet if for each x € X and each A € Q, there is a
sequence (Fy, : n € N) of filter-bases on A satisfying (FF1) and (FF2)
above and the condition

(FF3) For each n € N there is a countable F' € F,.

SSF: strongly set-Fréchet if for each x € X and each A € , there is a
sequence (B, : n € N) of pairwise disjoint subsets of A such that the
following conditions hold:

(SF1) z ¢.B,, for each n € N;
(SF2) each neighborhood U of z intersects all but finitely many sets By,;



CONVERGENCE PROPERTIES OF HYPERSPACES 851

(SF3) each B, is countable.
SF: set-Fréchet if only conditions (SF1) and (SF2) in SSF are satisfied.

The following diagram describes relationships among the mentioned classes
of spaces (CT denotes the class of spaces having countable tightness).

cT
y

compact Ty

FU SFF SSF SF FF = SFF

Seq Pyt Rez

The Fréchet-Urysohn property and sequentiality in hyperspaces were studied
in [16], [3], {12], the countable tightness property in [16], [9], [3] (and variations
on tightness in [4]), the Reznichenko property and the Pytkeev property in [11}.
We consider here hyperspaces having the remaining properties in the diagram
above. The considered basic spaces X are locally compact (and Hausdorff); in
such a case the space (2%, F) is Hausdorff [7].

Theorem 7. Let X be a locally compact space. Then (1) implies (2) :
(1) (2%,F) is a filter-Fréchet space;
(2) For each open set Y C X and each k-cover U of Y there is a sequence
(B, : n € N) of filter-bases on U such that:
(i) For each n, there is C,, € B,, which is not a k-cover of Y;
(i1) For each compact subset K of Y there is ng € N such that when-
ever n > ng, then there exists H, € By, satisfying K C H for
every H € H,,.

Proof. Let U be a k-cover of an open subset Y of X. Then Y € 2X and the
subset A := U° of 2% satisfies A € Qy-. Indeed, let W = (K°)T N (Mi<m V")
be an F-neighborhood of Y. Since U is a k-cover of Y and K C Y, there is
alUeUwith K CU. FromY*nV; # 0 foralli <m, and U° D Y° it
follows easily that U¢ € W. Since (2%,F) is a filter-Fréchet space, there is a
sequence (F,, : n € N) of filter-bases on .4 that satisfies the conditions (FF1)
and (FF2). For each n € N let B,, denote the collection {G¢ : G € F,}. Each
B, is a filter-base on U because each F, is a filter-base on A. We prove that
the sequence (B, : n € N) satisfies the conditions (i) and (é4). For each n,
there is an element S,, € F,, such that Y° ¢ CIg(S,,). It follows that S5 € B,
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is not a k-cover of Y (otherwise, Y¢ € Clg(S,)). To check (ii), let K be a
compact subset of Y. Then (K¢)T is a F-neighborhood of Y¢, hence there is
no € N such that for each n > ng there exists some S, € F,, with S,, C (K°)™.
Consequently, S5 is an element of B,, that satisfies K C S for every S € S,.
Therefore, (44) holds. 0

Similarly to the proof of Theorem 7 one can prove

Theorem 8. For a locally compact space X we have (1) implies (2) below:
(1) (2%,F) is a strongly filter-Fréchet space;
(2) For each open set Y C X and each k-cover U of Y there is a sequence
(B : n € N) of filter-bases on U such that:
(i) For each n, there is C, € B,, which is not a k-cover of Y;
(it) For each compact K subset of Y there is ng € N such that when-
ever n > ng, then there exists H, € B, satisfying K C H for
every H € H,;
(¢4i) For each n € N there is some countable element in B,.

The following example shows that in Theorem 8 (2) need not imply (1).

Example 9. [CH] There exists a space X satisfying the condition (2) in the
previous theorem, but (2%, F) is not a strongly filter-Fréchet space.

Let X be the Hausdorff, compact, hereditarily Lindeléf, non hereditarily
separable space constructed under CH in [15]. From Corollary 2.16 in [3], it
follows that (2%, F) has uncountable tightness so that it is not SFF.

Let us show that the condition (2) in Theorem 8 holds. Let Y be any
open subset of X and let U/ be a k-cover of Y. As Y is locally compact and
Lindeldf, it is hemicompact (see 3.8.C.(b) in [6]). Let (K, : n € N) be an
increasing countable family of compact subsets of ¥ such that each compact
subset of ¥ is contained in some K,,. For each n pick a set U,, € I{ such that
K, C U,. Since U is a k-cover of Y, Y is not a member of &. Thus for each
n € {1,...,n0}, where ng is some element in N, pick a point z,, € Y \ U,, and
for each n € N define

B, ={{Ui:n<i<n*}:n*>n}.

It is clear that {U; :n < i < n}} C {U;:n <i<nj}for n < n}<ni, sothat
the collection B, is linearly ordered by inclusion and in particular it is a filter
base. We show that the sequence (B,, : n € N) satisfies:

(i) For each n, there is C,, € B,, which is not a k-cover of Y,
(it) For each compact set K C Y there is ng € N such that whenever
n > ng, then there exists H,, € B, satisfying K C H for every H € H,;
(¢43) For each n € N there is some countable element in B;,.
Of course, (4ii) is satisfied because every element of B,, is finite. The condition

(i) is also true. Indeed, for a given ¢ € N, we have by the choice of points x,
that no element of {U; : n < ¢ < n*} includes the set {z; : n <4 < n*} which
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is a compact subset of Y. Finally, let us prove that (ii) holds. Let K be a
compact subset of Y. There exists ng € N such that K C K,,,. For eachn > ng
take any element H,, := {U; :n <i <7} in B, = {{U;:n <i<n*}:n* >n},
where 7 is an element of N with @ > n. Then we have K C H for each H € H,,.
Indeed, for each i € N with n < i <7 we have K C K,,, C K,, C K; C U;. O

Theorem 10. If X is a locally compact space and (2%, F) has the strong set-
Fréchet property, then for each open set Y C X and each k-cover U of Y there

is a sequence (V, : n € N) of countable, pairwise disjoint subsets of U such
that:

(i) no Vy is a k-cover of Y;

(i) each compact subset K of Y iz contained in an element of Vy, for all
but finitely many n.

Proof. Let Y be an open subset of X and let & be a k-cover of Y. Then the
set A :=1U° C 2% belongs to Qy- (see the proof of Theorem 7). By (1) choose
countable, pairwise disjoint sets B, C A, n € N, such that Y ¢ Clg(B,) for
each n € N, but each F-neighborhood of Y© intersects all but finitely many sets
B,,, say all By, for n > ng for some ng € N. The sets V,, :== BS, n € N, are
countable, pairwise disjoint subsets of L. No V,, is a k-cover of Y. On the other
hand, let K be a compact subset of Y. Then (K°)*, being a F-neighborhood
of Y, meets each B, for n > ns; pick for each such n a B, € B, N (K°)*.
Then for each n > ng, K C BE, hence (ii) holds. O

In a similar way one can prove:

Theorem 11. If X is a locally compact space and (2%,F) is a set-Fréchet
space, then for each open set Y C X and each k-cover U of Y there is a
sequence (Vy, : n € N) of pairwise disjoint subsets of U such that:

(¢) no Vy is a k-cover of Y;
(#1) each compact subset of Y is contained in an element of V, for all but
finitely many n.
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