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A NEW SYSTEM OF GENERALIZED NONLINEAR MIXED
QUASIVARIATIONAL INEQUALITIES AND ITERATIVE
ALGORITHMS IN HILBERT SPACES

JonGg Kyu KM AND KyUNG Soo Kim

ABSTRACT. We introduce a new system of generalized nonlinear mixed
quasivariational inequalities and prove the existence and uniqueness of
the solution for the system in Hilbert spaces. The main result of this
paper is an extension and improvement of the well-known corresponding
results in Kim-Kim [16], Noor [21]-[23] and Verma. [24]-[26].

1. Introduction and preliminaries

In recent years, many classical variational inequalities and complementarity
problems have been extended and generalized to study a large variety of prob-
lems arising in mechanics, physics, optimization and control theory, nonlinear
programming problems, economics, transportation, equilibrium problems and
engineering sciences, etc. (see, [1], [2], [4]-[26])

In 2001, Verma [25] introduced and studied a new system of nonlinear vari-
ational inequalities based on a new system of iterative algorithms. And also,
Verma [26] investigated the approximation-solvability of a new system of non-
linear quasivariational inequalities in Hilbert spaces.

In 2004, Kim-Kim [16] introduced and studied a new system of generalized
nonlinear mixed variational inequalities bases on a new system of iterative
algorithms in Hilbert spaces.

In this paper, we introduce a new system of generalized nonlinear mixed
quasivariational inequalities and prove the existence and uniqueness of solu-
tion for the systems in Hilbert spaces. We also construct some new iterative
algorithms for the problems and give the convergence analysis of the iterative
sequences generated by the algorithms.

Throughout this paper, let H be a real Hilbert space with the inner prod-
uct (-,-) and the norm | - ||. Let 4,B,S,T,g1,92 : H — H be single-valued
mappings, ¢1,¢2 : H — R U {400} be proper convex lower semicontinuous
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functions and K be a closed convex subset of H. We consider the following
problem:
Find z*,y* € H such that g;(z*), g2(v*) € K and
(p(A(Y") + S(¥")) + 91(z") — 92(y"), = — 1 (7))
> p1(91(z")) — por(z),
(v(B(z*) + T(z")) + 92(¥") — 91(z"), = — 92(¥"))
2 792(92(y")) ~ v¢2(z)

for all z € H, which is called the new system of generalized nonlinear mized
quastvariational inequalities, where p > 0 and v > 0 are constants.

Special Cases of the problem (1.1):
(I) If A= B =0, then the problem (1.1) reduces the following:
Find z*,y* € H such that ¢g1{z*), g2(y*) € K and

ay) { PS4l e oo 2 oblne) o)
(T (z*) +92(y") — 91(z"), 2 — 92(y")) 2 v92(92(y")) — v¢2()

for all x € H, which is called the system of nonlinear mized quasivariational
tnequalities.

(II) If ¢1 = ¢ = Sk (the indicator function of a nonempty closed convex
subset K'), then the problem (1.1) reduces the following:
Find z*,y* € K such that g1(z*), g2(y*) € K and
{ {(p(Ay™) +5(y™) + 91(2") — g2(¥"), 2 — g1(2")) 2 0,

(Y(B(&") +T(x")) + g2(y") — 91(z"), 2 — g2 (¥")) 2 0
for all z € K, which is called the system of generalized nonlinear quasivaria-
tional inequalities.

(IIT) If ¢1 = ¢2 = Sk (the indicator function of a nonempty closed convex
subset K) and A = B = 0, then the problem (1.1) reduces the following:
Find z*,y* € K such that g;(z*),92(y*) € K and
{ (pSW™) + g1(z™) — 92(y"), z — ga1(z™)) > 0,

(YT(z") + 92(y™) — g1(z"), 2 ~ g2(y™)) = 0
for all z € K, which is called the system of nonlinear quasivariational inequal-
ities.

(1.1)

(1.3)

(1.4)

Now, we give some definitions and lemmas for the main theorems.

Definition 1.1. Let T',g : H — H be mappings.
(1) T : H — H is said to be k-strongly monotone if there exists a constant
k > 0 such that

(T(z) = T(y),z —y) > kllz — y|*
for all z,y € H. This implies that
IT(z) - TW)ll = kllz -yl
that is, T is k-expanding and when k = 1, it is expanding.
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(2) T : H — H is called g-k-strongly monotone if there exists a constant
k > 0 such that

(T(2) = T(y), 9(2) — 9() > kllg(z) — 9|

for all z,y € H. This implies that

IT(z) = Tl = kllg(z) = g()lI,

that is, T is g-k-expanding and when k = 1, it is g-expanding.
(3) T : H — H is said to be s-Lipschitz continuous if there exists a constant
s > 0 such that

IT(x) = T(W)ll < sllz—yll
for all x,y € H.

(4) T : H — H is called g-s-Lipschitz continuous if there exists a constant
s > 0 such that

IT(2) = T(y)ll < sliglz) — gl
for all z,y € H.

Lemma 1.1 ([16]). Let {an},{bn} and {cn} be sequences of nonnegative num-
bers satisfying the following condition: there ewists ng such that

(1.5) nt1 < (1 —tp)an + bpty + cn
for all n > ng, where t,, € [0,1], Z tn = 00, hm b, =0, Z cn < 00. Then
n=0 n=0
lim a, =0.
N—>00

Lemma 1.2 ([3]). For any given u € H, a point z € H satisfies

(u—z,v—u) > pp(u) — p(v)
for allv € H if and only if
u= Jg(2),

where J. g = (I + pd¢)~! and 8¢ denotes the subdifferential of a proper conver
lower semicontinuous function ¢ : H — R U {+o0}.

Remark 1.1. Tt is well known that J is nonexpansive (see [3]).

Lemma 1.3. For any giwen z*,y* € H, (z*,y*) is a solution of the problem
(1.1) f and only if

g1(z*) = J§, (92(y") — p(A(Y") + S,
92(y") = J4,(91(z") —v(B(z") + T(z™)))-

Proof. Tt is easy to prove that Lemma 1.3 holds from Lemma 1.2. O
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2. Existence and uniqueness

Now, we shall show the existence and uniqueness of solution for the problems

1.1).

Theorem 2.1. Let S : H — H be a ga-ka-strongly monotone and gs-sa-
Lipschitz continuous mapping, T : H — H be a g1-k1-strongly monotone and
g1-81-Lipschitz continuous mapping, A : H — H be a g3-l3-Lipschitz continu-
ous mapping and B : H — H be a g1 -1 -Lipschitz continuous mapping. Suppose
that g1,92 : H — H are invertible. If

2(ky — 1
0<p< (22—l22)’ Iz < ks,

2.1 27 "2
<A< ——3 Iy <k,

st — Ui

then the problem (1.1) has a unique solution (z*,y*).

Proof. First, in order to prove the existence of the solution. Define a mapping
F . H — H as follows :

F(z) = J§ [J3,(z = v(B(gy ' () + T(91 ' ())))
= p(A+8)(93 (I3, (z = v(B(g7 () + T(g7 (@)))))]
for each z € H. Since J gl is nonexpansive, for any z, y € H, we have
|1F(z) = F(y)ll
= |17, [93, (z = ¥(B(g1 () + T(g7 " (2))))

(2.2)

— p(A+8)(g3(J3, (x = v(Blor ' (2)) + T(91 " (2))))]
— I, 13, = v(Blgr () + T(91" (v)))
= p(A+8)(92 (93, (y = ¥(Blor' @) + T(or @M

23) <TG (= —(Blgr (@) + T(g7(2))))
- J3,(y —v(Blo: ') + T(97*))))
— p{8(95 1 (73, (@ = v(B(gr } () + T(g1  (@))))))
— 8921 (I3, (y = v(Blgr () + T(g1 @)}
+pllAlgz (I3, (= = v(Blgi (@) + T(g: " (2))))))
= A9z (3, (v = v(Blgr ' ®)) + T(g @))N)I-
It follows from the conditions of S,T, A, B, g1, g2, that

173, (& = (B(g; (=) + T(91 *(2))))
~J3, 6y —v(Bor ') + T(g1())))
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= p{S(g5 " (3, (& = v(Blo1 (@) + T(91 " (@)))))
= S(93 1 (73, (y = v(Blgr ' ()) + T g1 )MNI®
= 1173, (@ —¥(B(gr () + T(97 "
= J3, (= v(Blor () + T(or " W)
—2p(J],(z = ¥(B(g1 " (2)) + T(g7 " (2))))
~ 3,y = ¥(Blgr" (v) + T(g7 ' (v)))),
(921 (93, (e — v(Blgy ' (z)) + T(91 ' (2)))
= S(92 " (U3, (y = ¥(Blgr ' (¥)) + T(97 ' (v
+0%(18(95 (I, (w— (Blgr (@) + T(g1 ' (2))))

~ S (I, — ¥(Blr @) + (g @)
< 13, (= = v(B(97(2)) + T(g: *(2))))
~J2, (= (BT W) + T o))
(24) — 2pka |7, (& = ¥(B(97 (2)) + T ()))
— Ty —v(B(e7 (1)) + T )
+ P31, (2 — A(Blor (@) + T(g7(2)))
— Ty — (B (%)) + T ()
= (1 - 20ks + p2s3) T2, (& — ¥(B(972 (2)) + T(97(=)))
—J7, = (B W) + T )2
< (1—2pky + p*s3) ||z —y — v(Bg7 ' (2)) + T(g7 ' (2))
— (Blo7' W) + T(e7 )]
< (1 —2pky +pzs§)
iz —yl® = 2v(z —y, T(g7 '(z)) — T(97*(¥)))
+43 T (o7 (@) = T(or W) IA)F +vhille — vl
< (1= 2ks + F53) (/1 — 291 + 7282 +91) e —
and

pllA(g5 1 (7, (= = ¥(Blgr (=) + T(g97 ' (2))))))
— Algy '(J2, (v = v(Bor " @) + Tl " @))))I
(25) < phble—y—v(Blgi () + T(9 ' (2))
— (Blei ) + T (g )
< plo{llz —y = v(T(g1 *(2)) — T(gr " W)l + vl — yl}

827
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< pla (/1= 2yks + 925 + 91 ) e =yl

From (2.3)-(2.5), we have
(2.6) |1F(z) — F(y)|| < 6162/l —y||
for all z,y € H, where

2.7 61 = /1 —2pky + p2s2 + pla, Oy = /1 — 2vk; + v2s% + ~l1.

It follows from (2.1) that 6; < 1 and #2 < 1. Thus (2.6) implies that F' is a
contractive mapping and so there exists a point g;(z*) € H such that g (z*) =
F(g1(z*)). Therefore, from the definition of F, we have

g1(z*) = J (92(y") — p(A + S)(y))
and
92(y") = Jg, (q1(z") = v(B+T)(z")).
By Lemma 1.3, we know that (z*,y*) is a solution of the problem (1.1).
Next, we show the uniqueness of the solution. Let (u*,v*) be an another
solution of the problem (1.1). Then we have

g1(w") = Jg (g2(v") — p(A + §)(v"))
and
92(v") = Jg (g1 (v") = (B + T)(u")).
As in the proof of (2.6), we have
llg1 (") — g1 (w)II* < 6102191 (") — g1.(w)]*.
Since 61 < 1 and 62 < 1, it follows that g1 (z*) = g1(u*) and so g2(y*) = g2(v*).
This completes the proof. O

If A= B = 0 in Theorem 2.1, then we have the following theorem as a
special case:

Theorem 2.2. Let S and T be the same as in Theorem 2.1. If0 < p < 22

s3
2ky

and 0 <y < =3, then the problem (1.2) has a unique solution (z*,y*).
1

If 1 = ¢2 = 6k in Theorem 2.1, then we have the following theorem as a
special case:

Theorem 2.3. Let K be a nonempty closed convexr subset of a Hilbert space
H. Suppose that A,B,S and T are the same in Theorem 2.1. If the condition
(2.1) holds, then the problem (1.3) has a unique solution (z*,y*).

If $1 = ¢2 = 6k and A = B = 0 in Theorem 2.1, then we have the following
theorem as a special case:

Theorem 2.4. Let K be a nonempty closed convex subset of a Hilbert space
H. Suppose that S and T are the same in Theorem 2.1. If 0 < p < %3 and
2

0<y< %%'L, then the problem (1.4) has a unique solution (x*,y*).
1
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Remark 2.1. (1) If g1 = go = I (the identity mapping) and ¢1 = ¢2 = ¢ (a
proper convex lower semicontinuous function) in (1.1), then the problem (1.1
reduces to find z*,y* € H such that

{ (p(A(Y") + SW™) + 2" —y",x — ") > pgp(a”) — pd(),
(V(B@") +T(z") +y* — 2%,z —y*) > vé(y*) — vé(z)

for all x € H, which is defined by Kim-Kim [16] and is called a new system of
generalized nonlinear mized variational inequalities. Hence Theorem 2.1 is the
extension of the result of Kim-Kim [16].

(2) Theorems 2.2, 2.3 and 2.4 are extensions and improvements of the cor-
responding results in Noor [21]-[23] and Verma [24]-[26].

3. Algorithms and convergence

In this section, we construct some new iterative algorithms for the problems
(1.1)-(1.4). We also give the convergence analysis of the iterative sequences
generated by the algorithms.

Now we give the algorithm for solving the problem (1.1) as follows:

Algorithm 3.1. For given zy € H, define the iterative sequences {g1(x»)} and
{g92(yn)} with mixed errors as follows:
91(xn+1) = (1 = an)gi(zn)

+ O‘nngg(QZ(yn) - p(A(yn) + S(yn)))
+ apuy + Wnp,

92(yn) = J,(91(zn) = ¥(B(@n) + T(24))) + vn

(3.1)

for all n > 0, where {a,,} is a sequence in [0, 1], {u,}, {wn}, {vn} are sequences
in H and ¢1,92 : H — H are mappings.

If A= B =0, then Algorithm 3.1 reduces to the following algorithm for
solving the problem (1.2).

Algorithm 3.2. For given x; € H, define the iterative sequences {g1(zn)} and
{g92(yn)} with mixed errors as follows:

91(zn+1) = (1 — an)g1(zn) + anJ£1 (92(yn) — pS(yn))
+ Qnln + Wy,

92(yn) = J,(91(zn) — vT(z0)) + vn

for all n > 0, where {an}, {un}, {wn}, {vn}, g1 and g2 are the same as in
Algorithm 3.1.

If 1 = ¢o = dk in Algorithms 3.1 and 3.2, then the following algorithms
for solving the problems (1.3) and (1.4), respectively.
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Algorithm 3.3. For given 2y € H, define the iterative sequences {g1(x,)} and
{g2(yn)} with mixed errors as follows:

91(#n+1) = (1 — an)g1(zn) + anPr(g2(yn) — p(A(yn) + S(yn)))
+ anty + wy,

92(yn) = P (91(zn) = ¥(B(zn) + T(zn))) + vn

for all n > 0, where {a,}, {un}, {wn}, {vn}, g1 and go are the same as in
Algorithm 3.1.

Algorithm 3.4. For given z; € H, define the iterative sequences {g1(z,)} and
{92(yn)} with mixed errors as follows:

91(Znt1) = (1 — an)g91(2n) + 2 Pr (92(yn) — pS(yn))
+ Qnln + Wy,
92(Yn) = Pr(g1(zn) — YT (xn)) + vn

for all n > 0, where {an}, {un}, {wn}, {vn}, g1 and g are the same as in
Algorithm 3.1.

Now, by using Algorithm 3.1, we prove the following theorem.

Theorem 3.1. Let A, B, S, T, g1, 92 be the same as in Theorem 2.1 and
{91(zn)} be the iterative sequence generated by Algorithm 3.1 satisfying the
conditions

(o] o0
62 ew=oo Y lunl <oo Jim fun] = Jim unf =0

If the condition (2.1) holds, then (zn,yn) converges to the unique solution
(x*,y*) of the problem (1.1).

Proof. By Theorem 2.1, we know that the problem (1.1) has a unique solution
(x*,y*). It follows from Lemma 1.3 that

cq1(z") = J§, (92(y") — p(A(y") + S(y™)))
and
(3-4) 92(y™) = JJ,(91(z") — v(B(z") + T(a"))).
From (3.1) and (3.3), we have

g1 (Zn+1) — g1(z*)|]
= [I(1 = an)g1(@n) + and}, (92(yn) — p(A(yn) + S(yn)))
+ s + wn — g1(z*}|
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< (- an)llgi(zn) — g1(z")|l

+ anllJE (92(yn) — p(A(yn) + S(yn)))

— J§ (92(y™) — p(A(y™) + SN + anllunll + [lwall
< (1= an)llgr(@n) — g1(z")|| + anllgayn) — 92(y")

— p(A(yn) + S(yn) = (Al™) + SN + anlluall + [lwnll
< (1= an)llgr(zn) — g1(z¥)]|

+ anlig2(yn) — 92(y™) — p(S(yn) — S

+ anplallga(yn) — g2y + anllunll + [lwn.-

(3.5)

Since S is go-ko-strongly monotone and go-so-Lipschitz continuous, we get

l92(yn) — g2(y™) — p(S(yn) = S(y™))l

(3.6) = .
< /1 = 2pks + p253 |iga(yn) — g2(¥")|l-

Combining (3.5) and (3.6), we have

191(#n+1) — g1(@") | < (1 = an)llga(zn) — g1(z")|
(3.7) + anb]|g2(yn) — g2(y")ll
+ an““n” + ||wn”7

where 01 = \/1 — 2pks + p?s2 + pla. Again from (3.1) and (3.4), we have
192(¥n) — g2(y")
= 173, (91(zn) = v(B(@n) + T(2n))) + vn
—J3,(g1(z") —v(B(") + T(=")))
(3.8) < llgr(zn) = g1(z") = ¥(B(zn) + T(xn) — (B(z") + T ("))
+ [|onl|
< llg1(zn) — g1(z%) = (T (@) — T(z"))|
+yhllgi(@n) — g1 (@) + llval.-

Since T is g;-ki-strongly monotone and g;-s1-Lipschitz continuous, we have

191(xn) = g1(2*) = ¥(T(zn) — T ("))

(3.9)
< A/1 =29k + 74283 l|gu(n) — gr(z™)]l-

Combining (3.8) and (3.9), we obtain

(3.10) l92(yn) = 92(y™)il < B2llga(@n) — (™)l + llvall,
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where 0, = m+ 1. It follows from (3.7) and (3.10) that
l91(zn41) — g1(z)||
< (1= an)llgr(@n) = 91(z")|| + anb12]|g1(zn) — g1(z™)|
+ anbi|on|| + anllunl| + [lwn |

(3.11)
= (1-an(1-6:62) ) lgr(2n) = 922} + lfwn]
1
+ an(1 = 6162) - Tp (Brlloall + ual])-
Let an = [lg1(zn) = 1@, b = =5 (Ballvall + Junl), en =l b0 =

an (1 — 60162). Then (3.11) can be rewritten as follows:

Ant1 < (1 —tn)an + bty + cn-
From the assumption, we know that {a,}, {b,}, {c.} and {t,} satisfying the
conditions of Lemma 1.1. Thus lim a, = 0 and so g1(z,) — g1(z*) as n — oo.
Since lim gq(zn) = g1{z*), it fc;llf(;ov&?s from (3.2), (3.8) and (3.9) that g2(yn) —
go (y*)n;)so;jz — 00. Since g1, g2 are invertible,

. . . N
lim z, =z*, lim y,=y".
n—oo =00

This completes the proof. O
If A= B =0 in Theorem 3.1, then we have the following:

Theorem 3.2. Let S, T be the same as in Theorem 2.2 and let {g1(zn)},

{g2(yn)} be the iterative sequences generated by Algorithm 3.2. If 0 < p < -2;%2

and 0 < v < 2% then (zn,yn) converges to the unique solution (z*,y*) of the

1

problem (1.2).
If ¢1 = ¢2 = dx in Theorem 3.1, then we have the following theorem.

Theorem 3.3. Let K, A, B, S, T be the same as in Theorem 2.3 and let
{g1(zn)}, {g2(yn)} be the iterative sequences generated by Algorithm 3.3. If the
condition (2.1) holds, then (zn,yn) converges to the unique solution (z*,y*) of
the problem (1.3).

If 1 = ¢2 = 6k and A = B = 0 in Theorem 3.1, then we have the following
theorem.

Theorem 3.4. Let K,S,T be the same as in Theorem 2.4 and let {g1 (zn)},
{92(yn)} be the iterative sequences generated by Algorithm 3.4. If 0 < p < 28%1
and 0 <y < 2?’“11, then (2n,yn) converges to the unique solution (z*,y*) of the
problem (1.4).

Remark 3.1. (1)If g1 = g2 = I and ¢; = ¢y = ¢ in Algorithm 3.1 and Theorem
3.1, then we can easily get the result of Kim-Kim [16], as a special case.
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(2) Theorems 3.2, 3.3 and 3.4 are extensions and improvements of the cor-

responding results in Noor [21]-[23] and Verma [24]-]26].

(1)
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