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BLOW-UP RATE ESTIMATES FOR A SYSTEM OF
REACTION-DIFFUSION EQUATIONS WITH ABSORPTION

ZHAOYIN XIANG, QIONG CHEN, AND CHUNLAI MU

ABSTRACT. In this note, we consider a system of two reaction-diffusion
equations with absorption, under homogeneous Dirichlet boundary. Using
scaling methods, we establish the blow-up rate estimates.

1. Introduction

In this note, we investigate the following system of reaction-diffusion equa-
tions with absorption:

ur — Au = 0P — qu”, re, t>0,
(1) vy — Av = u? — bv®, zeN, t>0,
u(z,t) = v(z,t) =0, ze€d, t>0,

u(z,0) = uo(z), v(z,0) =vo(z), €,

where p,gq,7,8,a,b > 0, @ C R" is a bounded domain with smooth boundary
0Q, uo(x), vo(x) are continuous and nonnegative functions, and vanish on 9.

Equations in (1) provide a simple model to describe, for instance, the co-
operative interaction of two diffusing biological species (see [2]). We also refer
to [1, 16, 17] for details on physical models involving more general reaction-
diffusion systems.

In [2], Bedjaoni and Souplet proved that: (i) If pg > max(r, 1)max(s, 1),
then there exist solutions of (1) which blow up in finite time; (i) If pg <
max(r, 1)max(s, 1), then all solutions are global; (iii) in the critical case pq =
max(r, 1)max(s, 1), the issue may depend on the size of the coefficients a and
b.

The main purpose of this paper is to establish the blow-up rate estimates
for the blow-up solution (u,v) of (1). Since the system is completely coupled,
u and v have simultaneous blow-up, which is necessarily for studying the blow-
up profiles of blow-up solutions for the systems. Throughout this paper, we
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assume pg > max(r, 1)max(s,1) and denote

p+1
a =

1
pg—1’ p= M (t)= sup u(z,7), My(t) = sup v(z,7).

Cpg-1 ax(0,4) ax(0,4]
Our main results are the following.

Theorem 1.1. Assume r < pgi—} and s < q%i—i. Let (u,v) be a solution of
(1), which blows up at finite time T. Then there exists a constant ¢ > 0 such

that

max u(z,7) > (T —t)~% max v(z,7) > c(T —t)7P.
Qx[0,t] Qx[0,t]

Theorem 1.2. Assume r < pg—% and s < qfl%, and max(a, B) > % Let
(u,v) be a solution of (1), which blows up at finite time T. Then there exists a
constant C > 0 such that

max u(z,7) <C(T—1)"% max v(z,7) <CT -t)7~.
Qx[0,t] 2x[0,t]

We remark that r = p%l’—} and s = qfl% are critical exponents on the ex-
istence of forward self-similar solutions to system (1) (see [2, 18]). We also
remark that for system (1) without absorption (i.e., a = b = 0), some au-
thors have established the blow-up estimates. In the case of p,q¢ > 1,pg > 1,
Deng [4] and Wang [20] gave similar estimates as Theorem 1.1, 1.2 for the
time-increasing solutions (generally, which can be ensured under the assump-
tion that (ug,vo) is a pair of subsolutions of the system). On the other hand,
using scaling methods introduced by [9] (developed by [3, 7, 10]), Fila and Sou-
plet [7] also obtained similar results as Theorem 1.2. Our results are consistent
with them if we take r = s = 0. The advantage of the scaling method is that
we only need to assume uo(z), vo(x) are nonnegative. In general, some growth
restrictions on the reaction terms are necessary since the arbitrariness of initial
data (see also [8, 11, 12]). Recently, Souplet and Tayachi in [19] also studied
the following system

(2) w—Au="+u", v —Av=ud+° zeRY, t>0,

with the same initial data as (1). They consider the condition of simul-
taneous blow-up and nonsimultaneous blow-up. Similar critical exponents
r = pgi—},s = qz—ﬁ occur when they established the blow-up estimates for
the blow-up solutions of (2).

If ug(z) = vo(z), p =¢q, a = b, r = s, in system (1), we have v = v. Then
we get as a Corollary of these two theorems a similar result for single equation,
whose blow-up rate estimates, as we know, has not been given in the literature
previously.
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Theorem 1.3. Consider the problem

ue — Au=uP — qu”, t€eN, t>0,
(3) u(z,t) =0, z€d, t>0,

w(z, ) = up{z), z < Q.
Let p > max(r,1) and u be a solution of (3), which blows up in finite time T.
Then there exist constants C > ¢ > 0 such that
(i) maxgyoqulz,7) > (T —t)"51;
(1) maxgyp g u(z,7) < C(T — )75 provided that p < 1+ F?FI
Remark 1.1, If pg = max(r, 1)max(s, 1), r,s > 1 and a, b are sufficiently small,
then there exist solutions of (1) which blow up in finite time (see [2]). Under
this assumption, a carefully check of the proof of Lemma 2.1 and Theorem 1.1

shows that the lower estimates Theorem 1.1 (correspondingly, Theorem 1.3 (i))
are still valid.

The rest of this paper is organized as follows. In Section 2, we give the lower
blow-up estimates. Then, we establish the upper estimates in Section 3. We
will use some ideas of ([3, 6, 7, 15]) to prove our conclusions.

2. Lower blow-up estimates

We begin our arguments with a lemma, which gives the relationship between
M, (t) and M, (t) near the blow-up time T". As the above mentioned, this lemma
also implies that the simultaneous blowup occurs.

Lemma 2.1. Assumer < p%j_'—} and s < q(}_‘%. Let (u,v) be @ solution of (1),
which blows up at finite time T. Then there exists § € (0,1) such that

(4) SIMITWMPF ()<, te (—?Tl

Proof. Since the solution (u,v) blows up at finite time 7', without loss of gen-
erality, we may assume M,, diverges as ¢t — T. It is sufficient to prove the first
inequality in (4). On the contrary we assume it is not true, then there exists a
sequence {t,,} with t, — T as n — +oo such that

1
(5) MJ%(tn) 2 (tn) =0 as n— oo.
For each t,, there exists (Zn,t,) €  x (0,t,] such that w(@,,t,) = My (tn).
Because M, (t,) — oo, it follows that {, — T asn — . Let d,, := dist(z,,, O€Y)
1
and A, 1= A(tn) := My 2% (t,). We distinguish two cases depending on whether
d
(¢) lim sup I _ oo or (i)limsup 5\—’3 < 0.
N-—=00 T n—00 {3
Case (i) Choose a subsequence (denoted again by {t,,}) such that
dr,

lim — = oo.
~=>00 n
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We rescale the solution (u,v) about the corresponding point (Z,,%,) with the
scaling factor A\, as follows:

¢ (y, 7) = A2 Ay + Eny N2T + 1),
P (Y, 7) = AP V(Any + B, A2T + 1),
where
(W) € Un X (A2, M2 (T — 10)), Qn={y €RY : My + &, € Q.
Clearly, (¢*~,4*») is a solution of the system
$r = Ap = g7 —aX OO g — Ay = g7 — AL Aye
in Q, x (=X, 0, %(T — £,,)). Then, in Q, x (—=X;2E,,0] it holds that

6)  "(0,00=1, 0<¢™ <1, 0<y™ < M5 (t)Mo(tn).

Noticing that r < pgi—i and s < q%i—, we have a(r —1) <1and B(s — 1) < 1.

Hence, A2(et1-om) _ Ky, AZBFI=89) K2 a8 Ap, — 0, where k1,%3 € {0,1}. It
follows from the interior Schauder’s estimates ([13]) that there exists a o € (0,1)
such that for any K > 0,

IA

CKa

< CK,

An

197" lc2seass 6.y <xyx-K0)
/\n

4 ||02+"’1+%(Qnm{]yISK}X[—K:OJ)

where the constant Cg is independent of n. By compactness and diagonal
arguments, we obtain a subsequence of {¢*~,9*»} converging to a solution of

(7) or — AP =P —ar1¢d", ¢r—A%h = ¢7—brtb®, (y,7) € RN x (=00,0].

On the other hand, it follows from (5), (6) that ¢(0,0) = 1 and ¢ < 1,
0 <4 =0in RY x (—00,0], which contradicts to the second equation in (7).

Case (ii) Choose a subsequence (denoted again by {t,}) such that

. dy
oy, =ezo

Let #, € 00 be such that d,, =| &, — %, | and let R, be an orthonormal
transformation in RY that maps —e; := (—1,0,...,0) onto the outer normal
vector to 9Q at &,. Now, we define the new scaling

Oy, ) = AU Rpy + &, A27 + 1),
1’/")\” (y’ T) = Aﬁﬂv()\any + in, )\72z7' + fn)

for

) € Qn X (A2, AT —10)),  Qn = {y €RY : MRy + &, € Q).
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Then (¢*,9*") is a solution of the system
r = A = yF —aX TG Qo (<A, AT ~ 1)),
Yr — A =7 — by 0 (0% :
¢(y,7) =(y,7) =0, Oy x (-
If we restrict 7 to 7 € (=A%, 0], then clearly

_8
(0,00 =1, 0<¢* <1, 0< g™ < My = () My(tn),
in Qn x (=A;%%,,0].
Since €2, approaches the halfspace H, := {y; > —c} as A\, — 0 and 99 is

smooth, Schauder’s estimates for (¢*,1*~) yield a subsequence converging to
a solution (¢, ) of

¢r —Ap =9 —ak1¢”,  Hcx (—00,0],
Yr — AP = ¢ —broy®,  He x (—00,0],
¢p=9¢=0, {y1=—c}><(—oo,0],
where k1,k2 is same as Case (i). Furthermore, using (5), (8), we obtain

#(0,0) =1, ¢ < 1and ¥ = 0 in RY x (—00,0], which lead to a contradic-
tion.

Combining Case (i) and Case (ii), we have completed the proof of lemma. O

Proof of Theorem 1.1. Let G(z,t;y,7) be the Green’s function of the heat
equation in the bounded domain Q x (0,77 under the homogeneous Dirich-
let boundary condition. Then for each z € Q and 0 < z < t < T, we have the
representation formula:

¢
wet) = [ Gty + [ [ 02— a6ty v,
Q z JQ
¢
v(z,t) = /G(x,t;y,z)v(y,z)dy—}-/ /(uq—bvs)G(:v,t;y,z)dydT.
Q z JQ

Notice G(z, t;4,7) > 0 and fQ z,t;y,2)dy < 1. Hence, Lemma 2.1 implies

(8)

M) < Mo(2)+ / MP(r
< My(2) + (T — 2)MP(t) < Ma(2) + C(T — 2) Mo (t),
M,(t) < /Mq

< My(2) + (T — M) < My(z)+C(T — 2)Ma* (1),

By our assumption, M, (t) — oo as ¢t — T'. For any z, one can choose t € (z,T)
such that M, (t) = 2M,(z). Thus we have

2M,(2) < Mu(2) + 2% C(T — 2) M (2),

m
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which implies that for some positive constant ¢
M) >e(T-t)7% 0<t<T.

Similar arguments or using Lemma 2.1, we easily get the lower estimates of
M, (¢). O

3. Upper blow-up estimates

In this section, we use Lemma 2.1 to establish the upper blow-up rate esti-
mates.

Proof of Theorem 1.2. Notice M, (t) — oo ast — T. For any given t, € (0,T),
we can define t& by

td = max{t € (to,T) : My(t) = 2M,(t0)}.
Take Ao = A(to) := Ma ™ (to). We claim that

(9) A2 (to)(td —to) <C, to€ (g,

where the constant C € (0,+00) is independent of ¢3. Suppose that this
estimate were false. Then there would exist a sequence t, — T such that

~2(t,)(tf — tn) — oo. For each t,, we scale about the corresponding point
(Zn, fn) and define the \,,, d,, as Lemma 2.1. We divide the rest proof into two
cases depending on whether:

T)’

(¢) lim sup ;i =00 or (it)limsup i— < oo0.

Case (i) We use the same scaling as Case (i) in Lemma 2.1, and see (¢*, ¢*")
is a solution of the following system

¢r— D¢ = PP —aXiOHTG Qu x (=270, AP E))

Yr =AY = @7 b Qo (<A, AR — ).
Clearly, ¢*#(0,0) > £, 0 < ¢*~(y,s) < 2 in Qn x (=A; %60, A7 2(tF — 1n)). By
Lemma 2.1, we see

0 <™ (y,7) < NPM,(6) < NP6 MY (8F) = 2567,
for any (y,7) € Qn x (=A%, A2t — £0)).

*tn
f

Then, uniform Schauder’s estimates for (¢*»,4*") yield a subsequence con-
verging to a solution (¢, 1) of

(10) ¢r—Ap=9P, Y. —AyY=¢7, RY xR
Meanwhile, we have
0<¢<2 0<¢ <2262, in RV xR,

and ¢(0,0) > . This is a contradiction, as it was shown in [5] that all positive
solutions of (10) under our assumptions blow up in finite time.
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Case (ii) First, we introduce the same scaling as Case (ii) in Lemma 2.1.
Similarly as Case (i), we can show there exists nontrivial nonnegative solution

(¢, %) of

¢T_A¢:1/}p’ wT_A¢:¢q7 HCXRa

¢(y77-) = w(va) = 03 {yl = -—C} X Ra
such that 0 < ¢ < 2,0 < ¢ < 22528 in H, x R and $(0,0) > 1, which lead to
a contradiction to global nonexistence result from [14] since max(a, 8) > %

Now, we have completed the proof of (9). Then using the ideas of {10, 3],
we can prove Theorem 1.2. Here, we give a sketch of proof for completeness.
For given tg € (%,T), we define ¢ = taL € (to,T) such that M, (t1) = 2M,(to).
It follows from (9) that ¢t — o < (:‘Mu_é (to). If we define to = tT € (t1,T), we
.1 .
easily obtain to —t1 < CM, *(t1) = CM, (t0)2_5. Continuing this process
we get a sequence t,, — T as n — oo satisfying
tnir —tn < OMy®(8)2°%, n=0,1,2,....

Adding these inequalities, we have T —ty < CM,, « (to)(1 —27=)~!. Noticing
to € (%, T) is arbitrary, we have established the upper estimates

T

M, <C(T-t)7* te (5,

The estimates of M, (t) follows from Lemma 2.1 and the above inequality. O

).
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