수중 전기방전을 이용한 에틸렌디아민테트라아세트산 폐액의 처리

Treatment of Liquid Waste Containing Highly Concentrated Ethylenediaminetetraaceticacid by Using Underwater Electrical Discharge

  • 조진오 (제주대학교 생명화학공학과) ;
  • 목영선 (제주대학교 생명화학공학과) ;
  • 강덕원 (한국전력공사 전력연구원)
  • Jo, Jin-Oh (Department of Chemical and Biological Engineering, Cheju National University) ;
  • Mok, Young-Sun (Department of Chemical and Biological Engineering, Cheju National University) ;
  • Kang, Duk-Won (Korea Electric Power Research Institute)
  • 발행 : 2007.05.31

초록

본 연구에서는 저전압 및 고전류에 의해 운전되는 수중 전기방전 기술을 이용하여 고농도(70,000 mg/L) 철(III)-에틸렌디아민테트라아세트산(Fe(III)-EDTA) 폐액을 처리하였다. 폐액내의 두 전극사이에 교류전압을 인가하면 폐액이 저항체의 역할을 하므로 전극주변 폐액의 온도가 빠르게 상승하며 동시에 전기화학반응에 의해 물이 분해되어 산소 및 수소 기체가 생성된다. 물의 기화 및 전기분해에 의해 생성된 기체가 전극주변을 감싸게 되면 이 기체층에서 강력한 전기방전이 일어난다. 과산화수소의 주입이 없을 때는 전기방전에 의해 약 50%의 Fe(III)-EDTA가 제거되었으며, 과산화수소 주입량이 증가됨에 따라 Fe(III)-EDTA 제거효율이 크게 증가하였다. 초기 Fe(III)-EDTA에 대한 과산화수소의 몰비가 24.7 이상일 때는 1 kWh의 에너지로 80 g 이상의 Fe(III)-EDTA를 제거할 수 있었다. 텅스텐 전극과 철전극을 비교한 결과 전극재질이 Fe(III)-EDTA 제거효율에 미치는 영향은 거의 없는 것으로 나타났다. 본 연구의 공정에서는 초기 Fe(III)-EDTA에 대한 과산화수소의 몰비가 24.7 이상일 때 30분 이내에 Fe(III)-EDTA 제거반응이 완료되었다.

This study investigated the treatment of liquid waste containing highly concentrated iron(III)-ethylenediaminetetraaceticacid (Fe(III)-EDTA) of 70,000 mg/L by an underwater electrical discharge process using low voltage and high current. When AC voltage is applied to the discharging electrode with the other electrode grounded, the temperature of the liquid waste around the discharging electrode rapidly increases, and at the same time, hydrogen and oxygen gases are formed at the electrode as a result of electrochemical reactions. Ultimately, gases formed by vaporization of water and electrochemical reactions cover the electrode. Since the liquid waste is electrically conductive, it elongates the ground electrode up to the border of the gas layer, where electrical discharge occurs. Without hydrogen peroxide, electrical discharge was able to remove about 50% of Fe(III)-EDTA. As the concentration of hydrogen peroxide added increased, the removal efficiency of Fe(III)-EDTA increased. When the molar ratio of hydrogen peroxide to the initial Fe(III)-EDTA was higher than 24.7, more than 80 g of Fe(III)-EDTA was removed with an energy of 1 kWh. A comparison between tungsten and steel electrodes showed that electrode material did not affect the Fe(III)-EDTA removal. In the present underwater electrical discharge process, the removal of Fe(III)-EDTA was completed within 30 min at molar ratios of hydrogen peroxide to the initial Fe(III)-EDTA higher than 24.7.

키워드

참고문헌

  1. Malik, M. A., Ghaffar, A., and Malik, S. A., 'Water purification by electrical discharges,' Plasma Sources Sci. Technol., 10, 82-91(2001) https://doi.org/10.1088/0963-0252/10/1/311
  2. Locke, B. R., Sato, M., Sunka, P., Hoffmann, M. R., and Chang, J.-S., 'Electrohydraulic discharge and nonthermal plasma for water treatment,' Ind. Eng. Chem. Res., 45, 882-905(2006) https://doi.org/10.1021/ie050981u
  3. Wang, H., Li, J., and Quan, X., 'Decoloration of azo dye by a multi-needle-to-plate high-voltage pulsed corona discharge system in water,' J. Electrostatics, 64, 416-421(2006) https://doi.org/10.1016/j.elstat.2005.11.004
  4. Dors, M., Mizeraczyk, J., and Mok, Y. S., 'Phenol oxidation in aqueous solution by gas phase corona discharge,' J. Adv. Oxid. Technol., 9(2), 139-143(2006)
  5. Mok, Y. S., Ahn, H. T., and Kim, J. T., 'Treatment of dyeing wastewater by using positive pulsed corona discharge to water surface,' Plasma Sci. Technol., 9(1), 1-5(2007) https://doi.org/10.1088/1009-0630/9/1/01
  6. 강덕원, 이병호, 박승빈, 복합 플라즈마를 이용한 난분해성 액상 폐기물 분해처리기술, 한국전력연구원 연구보고서, 산업자원부(2005)
  7. Mizuno, T., Akimoto, T., Azumi, K., Ohmori, T., Aoki, Y., and Takahashi, A., 'Hydrogen evolution by plasma electrolysis in aqueous solution,' Japanese J. Appl. Phys., 44, 396-401(2005) https://doi.org/10.1143/JJAP.44.396
  8. 조진오, 목영선, 김석태, 정우태, 강덕원, 이병호, 김진길, '펜톤 반응을 이용한 원전 증기발생기 화학세정 폐액의 고농도 Fe(III)-EDTA 분해,' 공업화학, 17(5), 552-556 (2006)
  9. Kim, Y.-K., Kim, S. A., Lee, S. B., Kim, J. K., and Kang, D.-W., 'Decomposition of ethylenediaminetetraacetic acid using He-Ar-$O_{2}$, dielectric barrier discharge,' Plasma Proc. Polymers, 2, 252-255(2005) https://doi.org/10.1002/ppap.200400053
  10. Tucker, M. D., Barton, L. L., Thomson, B. M., Wagener, B. M., and Aragon, A., 'Treatment of waste containing EDTA by chemical oxidation,' Waste Management, 19, 477-482(1999) https://doi.org/10.1016/S0956-053X(99)00235-4
  11. Ramo, J. and Sillanpaa, M., 'Degradation of EDTA by hydrogen peroxide in alkaline conditions,' J. Cleaner Production, 9, 191-195(2001) https://doi.org/10.1016/S0959-6526(00)00049-4
  12. Park, E.-H., Jung, J., and Chung, H.-H., 'Simultaneous oxidation of EDTA and reduction of metal ions in mixed Cu(II)/Fe(III)-EDTA system by $TiO_{2}$ photocatalysis,' Chemosphere, 64, 432-436(2006) https://doi.org/10.1016/j.chemosphere.2005.11.017
  13. Thomas, L. C. and Chamberlin, G. J., Colorimetric Chemical Analytical Methods, The Tintometer Ltd., Salisbury, England(1980)
  14. Walling, C., Partch, R. E., and Weil, T., 'Kinetics of the decomposition of hydrogen peroxide catalyzed by ferric ethylenediaminetetraaceticacid complex,' Proc. Nat. Acad. Sci., 72(1), 140-142(1975)
  15. De Laat, J. and Gallard, H., 'Catalytic decomposition of hydrogen peroxide by Fe(III) in homogeneous aqueous solution: mechanism and kinetic modeling,' Environ. Sci. Technol., 33, 2726-2732(1999) https://doi.org/10.1021/es981171v
  16. Kwan, W. P. and Voelker, B. M., 'Decomposition of hydrogen peroxide and organic compounds in the presence of dissolved iron and ferrihydrite,' Environ. Sci. Technol., 36, 1467-1476(2002) https://doi.org/10.1021/es011109p