Water Flow Distribution and Sedimentation Characteristics of Particle Materials in the Sihwa Constructed Wetland

시화호 인공습지의 물흐름 분포 및 입자성물질 퇴적 특성

  • Choi, Dong-Ho (Kumho Engineering & Construction, Institute of Construction Technology) ;
  • Choi, Kwang-Soon (Korea Water Resources Corporation, Lake Sihwa Environmental Research Center) ;
  • Kim, Sea-Won (Korea Water Resources Corporation, Lake Sihwa Environmental Research Center) ;
  • Oh, Young-Taek (Korea Water Resources Corporation, Lake Sihwa Environmental Research Center) ;
  • Kim, Dong-Sup (Korea Water Resources Corporation, Lake Sihwa Environmental Research Center) ;
  • Joh, Seong-Ju (Kumoh National Institute of Technology, Department of Environmental Engineering) ;
  • Park, Je-Chul (Kumoh National Institute of Technology, Department of Environmental Engineering)
  • 최동호 (금호건설 기술연구소) ;
  • 최광순 (한국수자원공사 시화호환경연구소) ;
  • 김세원 (한국수자원공사 시화호환경연구소) ;
  • 오영택 (한국수자원공사 시화호환경연구소) ;
  • 김동섭 (한국수자원공사 시화호환경연구소) ;
  • 조성주 (금오공과대학교 환경공학과) ;
  • 박제철 (금오공과대학교 환경공학과)
  • Published : 2007.04.30

Abstract

Flow distribution of water and sedimentation rate were investigated to understand the hydrodynamics and settling characteristics of particulate materials in a constructed wetland for treatment of non-point sources pollutants, the Sihwa constructed wetland, Korea. The Sihwa constructed wetland is divided into three sub-wetlands(the Banwol, the Donghwa and the Samhwa wetlands) to treat the polluted water from three streams, the Banwol stream, the Donghwa stream and the Samhwa stream. From the results of water flow experiment using dye(Rhodamine 50WT Red), it was found that the water flow in the wetland was prevailing at the waterway and open water. Dye was spread slowly in the closed water area planted by plants. The mean hydraulic retention time(HRT) at the upper area of high wetland and lower wetland of Banwol, was found to be 34.1 hr at the upper area and 74.6 hr at the lower area respectively, totaling approximately 108.7 hr(4.5 days). The sedimentation rate was higher at lower area(sites of B, C and D) of the wetland than upper area(site of A which is settling zone). Based on the forecast for 20 years as to the amount of sediment that can be deposited in the open water in the future, the sediment depth of each area would be like this: A: 6.3 cm, B: 8.3 cm, C: 7.0 cm, D: 9.5 cm. The contents of organic materials in the sediment deposited within the sediment trap were found to be higher overly in the first investigation period which had much rainfall, and B, C and D areas were found to have an increased COD accumulation than A area. Also, nitrogen and phosphorus were found to increase in the down-stream of the wetland. The results of this study suggest that a sustainable research and management for the characteristics of water flow pattern and sedimentation changeable as time passes is needs to maintain or improve the efficiency of water treatment in the constructed wetland.

시화호 인공습지의 수리동력학적 특성과 입자성 물질의 침전특성을 살펴보기위해 물흐름조사 및 입자성 물질의 퇴적율 측정을 실시하였다. 시화호 인공습지는 크게 3개의 습지(반월, 동화, 삼화)로 나누어 볼 수 있는데 이는 각각의 하천에서 유입되는 비점오염물질의 처리를 위해 조성되었다. 조사지역은 반월천 고습지를 대표지역으로 선정 후 실시하였다. Rhodamine 50WT Red를 사용하여 물흐름 실험을 수행한 결과 자유수면(open water) 지역과 수로를 통한 물흐름이 주를 이루고 있었으며 식물이 식재되어 있는 폐쇄수역(closed water)에서의 물흐름이 지체되는 것으로 나타났다. 반월습지의 상부 및 하부 습지의 평균 수리학적체류시간(hydraulic retention time, HRT)은 각각 34.1 hr, 74.6 h,로 나타났으며 총 체류시간은 108.7 hr(4.5 day)이었다. 반면에, 침전율은 침전지(A지역)보다는 하류부의 open water지역(B, C, D지역)에서 높은 것으로 조사되었다. 향후 open water 내에 축적 가능한 sediment 양을 추정한 결과 20년 후 각 지역의 침전 깊이는 A: 6.3 cm, B: 8.3 cm, C: 7.0 cm, D: 9.5 cm로 나타났다. sediment trap 내의 유기물 축적량은 강우의 영향으로 1차 조사시기에 가장 높은 것으로 나타났으며 A 지역보다 B, C, D 지역에서의 축적량이 높은 것으로 조사되었다. 또한, 질소, 인 성분들은 하부습지에서 높게 나타났다. 이러한 결과로 인공습지의 효율적 관리를 위해서는 물흐름 및 입자성 물질들의 퇴적 특성에 대해 시간 변화에 따른 지속적인 조사 및 관리가 요구되어 진다.

Keywords

References

  1. 한국농어촌연구원, '습지의특성분석및관리대책연구(VIII),' 10-12(2003)
  2. Cowardin et aI., 'Classification of wetlands and deepwater habitates of the United State, U.S. Department of interior, fish and wildlife service office of biological. services,' pp. 74-82(1979)
  3. Mitsch, W. J. and Grosselink, J. G., 'Wetlands: wetlandstheir history, science and management,' Van Norstrand Reinhold, pp. 3 - 20(1993)
  4. Mulamoottil, G., Warner, B. G., and Mclsean, E. A., 'Wetland: environmental gradients, boundary and buffer,' Lewis Publisher, 38-64(1996)
  5. United State Environmental Protection Agency., 'Design manual: Constructed wetlands and aquatic plant systems for municipal wastewater treatment,' USEPA 625/1-88/022, 83 PF(1998)
  6. Water Pollution Control Federation. 'Wetland systems, in manual of practice: natural systems,' MOP FD-16 WPCF, pp. 84-92(1990)
  7. Reed, S. C., Middlebrooks, E. J., and Crites, R. W., 'Natural systems for waste management and treatment,' McGraw-Hill, New York, pp. 32-64(1988)
  8. Fisher, P. J., 'Hydraulic characteristics of constructed wetlands at Richmond,' NSW, Australia, in constructed wetlands in pollution control. Pergamon Press, New York, pp. 21-43(1990)
  9. Urban, D. T., 'Methods of determining residence time distribution in a reconstructed wetland,' MSE thesis, Ilinois institute of technology, pp 69 -72(1990)
  10. Kadlec, R. H., Bastiaens, W., and Urban, D. T., 'Constructed wetland for water quality improvement: Hydrological design of free water surface treatment wetlands,' Lewis Publishers, pp. 77-82(1993)
  11. Levenspiel, O., 'Chemical reaction engineering,' 2nd ed. John Wiley & Sons, New York, pp. 52-73(1972)
  12. Angela, Y. L., Jean, F. D., Jeffrey, A. C., and Martin, R., 'Comparison of rhodamine WT and bromide in the determination of hydraulic characteristics of constructed wetlands,' Ecological Engineering, 20, pp. 75-88(2003) https://doi.org/10.1016/S0925-8574(03)00005-3
  13. Kadlec, R. H., 'Hydrologic factors in wetland water treatment, in constructed wetlands for wastewater treatment,' D. A. Hammer, Ed. Lewis, Chelsea, MI, pp. 21-36(1989)
  14. Hakanson, L., Jansson, M., 'Principles of lake sedimentology,' The Blackburn Press, pp. 53-60(1983)
  15. 한국수자원공사, '시화호 인공습지 운영관리방안 연구,' pp. 25-50(2002)
  16. 해양수산부, '해양환경공정시험방법,' pp. 37-66(2002)
  17. Everts, C. J., Kanwar, R. S., 'Evaluation of rhodamine WT as an adsorbed tracer in an agricultural soil,' J. Hydrol., 153, pp. 53 -70(1994) https://doi.org/10.1016/0022-1694(94)90186-4
  18. Shiau, B. J., Sabatini, D. A., Harwell, J. H., 'Influence of rhodamine WT properties on sorption and transport in subsurface media,' Ground Water, 31(6), pp. 913-920 (1993) https://doi.org/10.1111/j.1745-6584.1993.tb00864.x
  19. 이경도, 'Treatment characteristics of prototype free water surface(FWS) constructed wetland for stream water purification,' 서울대학교 석사학위 논문(2000)
  20. Walter, J., Weber, J. R., and Francis, A. D., 'Process dynamics in environmental systems,' pp. 633-641(1996)
  21. 수원 기상대, 'http://suwon.kma.go.kr/,'(2005)
  22. 윤용남, '수리학: 기초와 응용,' 청문각, pp. 48-82(1995)