DOI QR코드

DOI QR Code

LEED I/V Curve Analysis of O/Fe(100) and MgO/Fe(100) System

O/Fe(100) and MgO/Fe(100) 계의 LEED I/V curve 분석

  • Seo, J.K. (Department of Ophthalmic Optics, Chodang University) ;
  • Kim, S.H. (Department of Ophthalmic Optics, Kwangju Health College)
  • 서지근 (초당산업대학 안경광학과) ;
  • 김상현 (광주보건대학 안경광학과)
  • Published : 2007.01.31

Abstract

We have analyzed the atomic structure of O/Fe(100) and interface atomic structure of MgO deposited on Fe(100) surface using LEED I/V curve analysis. As the O adsorption on the Fe(100) surface, the first substrate interlayer distance is expanded by up to 16%. For 1ML MgO deposited on Fe(100) surface, the oxygen ions of MgO are located on-top of the Fe atoms, the interlayer distance at the MgO/Fe interface are expanded. From the AIA(average intensity mixing approximation) calculation, we find the interface structure of monolayer MgO on Fe(100) system has the two interface structure with MgO/FeO/Fe(100) and MgO/Fe(100). This supports the results of EELS experiment that shown existence of stretched FeO layer and coexistance of MgO/FeO/Fe(100) and MgO/Fe(100) structure.

우리는 O/Fe(100)의 원자적 구조와 MgO/Fe(100) 표면의 계면의 구조를 LEED I/V curve를 이용하여 분석하였다. 산소를 Fe(100) 표면에 흡착시켰을 때 Fe 표면의 첫 번째 층간 간격은 약 16 % 정도 팽창하는 것을 확인하였다. 1ML MgO를 Fe(100) 표면에 성장하였을 때, MgO의 O가 Fe의 on-top 위치에 자라나는 것을 확인하였고, MgO/Fe 계면의 층간 간격이 확장되는 것을 확인하였다. AIA(average intensity mixing approximation) 계산을 사용하여 단층 MgO 성장한 Fe(100) 계의 계면구조는 MgO/FeO/Fe(100)와 MgO/Fe(100)의 계면구조를 갖는 것을 확인하였다. 이것은 확장된 FeO 층의 존재를 보이고 MgO/FeO/Fe(100)와 MgO/Fe(100) 두가지 계면 구조의 공존을 보인 EELS 실험 결과를 뒷받침 한다.

Keywords

References

  1. J.S. Moodera and G. Mathon, J. Magn. Magn. Mater. 200, 248 (1999), and references therein https://doi.org/10.1016/S0304-8853(99)00515-6
  2. M. Klaua, D. Ullmann, J. Barthel, W. Wulfhekel, J. Kirschner, R. Urban, T.L. Monchesky, A. Enders, J.F. Cochran, and B. Heinrich, Phys. Rev. B 64, 134411 (2001) https://doi.org/10.1103/PhysRevB.64.134411
  3. W. Wulfhekel, B. Heinrich, M. Klaua, T. Mochesky, R. Urban, and J. Kirchner, Appl. Phys. Lett. 78, 509 (2001) https://doi.org/10.1063/1.1342778
  4. H.L. Meyerheim, R. Popescu, J. Kirschner, N. Jedrecy, M. Sauvage-Simkin, B. Heinrich, and R. Pinchaux, Phys. Rev. Lett. 87, 076102 (2001) https://doi.org/10.1103/PhysRevLett.87.076102
  5. H.L. Meyerheim, R. Popescu, N. Jedrecy, M. Vedpathak, M. Sauvage-Simkin, R. Pinchaux, B. Heinrich, and J. Kirschner, Phys. Rev. B 65, 144433 (2002) https://doi.org/10.1103/PhysRevB.65.144433
  6. W. H. Butler, X.-G. Zhang, T. C. Schulthess, and J. M. MacLaren, Phys. Rev. B 63, 054416 (2001) https://doi.org/10.1103/PhysRevB.63.054416
  7. J. Mathon and A. Umerski, Phys. Rev. B 63, R220403 (2001) https://doi.org/10.1103/PhysRevB.63.220403
  8. M. Bowen, V. Cross, F. Petroff, A. Fert, C. M. Bowbeta, J.L. Kosta-Krmer, J.V. Aguita, A. Cebollada, F. Briones, J.M. de Teresa, L. Morelln, M.R. Ibara, F. Gell, F. Peir, A. Cornet, Appl. Phys. Lett. 79, 1655 (2001) https://doi.org/10.1063/1.1404125
  9. H. Oh, S. B. Lee, J. Seo, H. G. Min, and J.-S. Kim, Appl. Phys. Lett. 82, 361 (2003) https://doi.org/10.1063/1.1538311
  10. A. Wander, M.A. van Hove, and G.A. Somorjai, Phys. Rev. Lett. 67, 626 (1991) https://doi.org/10.1103/PhysRevLett.67.626
  11. P.J. Rous, J.B. Pendry, D. K. Saldin, K. Heinz, K. Mller, and N. Bickel, Phys. Rev. Lett. 57, 2951 (1986) https://doi.org/10.1103/PhysRevLett.57.2951
  12. P. J. Rous, Prog. Surf. Sci. 39, 3 (1992) https://doi.org/10.1016/0079-6816(92)90005-3
  13. J. B. Pendry, J. Phys. C 13, 937 (1980) https://doi.org/10.1088/0022-3719/13/5/024
  14. V. L. Moruzzi, J. F. Janak and A. R. Willams, 'Calculations of Electronics Properties of Metals', (Pergamon, New York, 1978)
  15. F. Jona and P. M. Marcus, Solid State Commun. 64. 667 (1987) https://doi.org/10.1016/0038-1098(87)90675-2
  16. B. D. Yu and J.-S. Kim, Phys. Rev. B 73, 125408 (2006) https://doi.org/10.1103/PhysRevB.73.125408