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Application of Numerical Differentiation Using
Differential Quadrature(DQ) to Curved Member—Ilike
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ABSTRACT

This paper deals with the application of the numerical differentiation using the differential
quadrature(DQ) in the curved member—like structural analysis. Derivative values of the geometry
of structure are definitely needed for analyzing the structural behavior. For verifying the numerical
differentiation using DQ, free vibration problems of arch are selected. Terms of curvature
composed with the derivatives of arch geometry obtained herein are agreed quite well with exact
values obtained explicitly. Natural frequencies subjected to terms of curvature obtained by DQ are
agreed quite well with those in the literature. The numerical differentiation using DQ can be
practically utilized in the structural analysis.
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1. Introduction

*  Corresponding Author, Member, Dept. of Civil Since various numerical methods are definitely
Engineering, Wonkwang University needed in the structural analysis, more efficient
E-mail : bkleest@wku.ackr
Tel : +82-63-850-6718, Fax . +82-63-87-7204 L

* Member, Dept. of Civil Engineering, Namdo  the analyses of structure. Therefore, efficiencies
Provincial College of various numerical methods were studied in the

* %&r\r]’g;;’tyl)ept of Civil Engineering, Wonkwang science and engineering fields". Historically,

numerical methods are increasingly asked for in
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applications of the numerical integration methods

researchers?.

were Investigated by many
Meanwhile, works related to the applications of
numerical differential method are very rare in
the open literature. ‘

This paper deals with application of the
numerical differentiation(ND) using the differential
quadrature(DQ) in the analyses of the curved
member—like structure. Note that hereafter the
term of ‘numerical differentiation’ is implicitly
expressed as ‘ND’ in this study. For verifying
ND using DQ, firstly, parameters of a given
structure are computed by DQ; secondly, these
parameters are compared with exact values
obtained explicitly; and finally, structural
responses obtained herein are compared with
those in the open literature. Herein, free
vibration problems of arch with the variable
curvature are selected for applying DQ to ND
in the structural analysis.

In case of the structures with the variable
curvature, namely curved member—like structures
such as arches, it is difficult not only to develop
their

responses since the terms of curvature are

theories but also to get structural
considered in developing theories”. References

and their citations include the governing
differential equations and solution methods in the
free vibration problems of arch. Lee and
Wilson
uniform arches in which both parabolic and

Wilson et

investigated free vibrations of the

sinusoidal arches were considered;
al.’® reported natural frequencies of the circular
arches with both prime and quadratic variable
and Lee® studied

in—plane free vibrations of the catenary arch

cross—sections; Wilson
with unsymmetric axis; Oh et al.” researched
free vibration problems including both rotatory

Lee et al®?

and shear deformation effects;
frequencies of the tapered

©)
al.

governing the free

reported natural

cantilever arch; and Lee et derived

differential  equations

186/H22STE3 I =2H/A17 A A 2%, 20074

vibrations of arch in the rectangular co—
ordinates rather than in the polar co—ordinates.
In the works mentioned above, ND methods
were not applied in calculating coefficients in the
differential equations. In the open literature, only
work related to ND methods is the paper by

10 i which Taylor expansion method

Lee et al.'
such as the forward fifth polynomials was

applied rather than DQ adapted herein.
2. Differential Quadrature

2.1 First Order Derivative

If a function is given such that y=f(x)
shown in Fig.1, then its derivative gy/dx is
obtained explicitly. However, the given functional
equations are mathematically complicated, the
analytical process obtaining its derivatives are
very cumbersome and time consuming.

The differential quadrature(DQ) method is a
numerical discretization technique for approxi—
Consider

mation of the derivatives. a one

dimensional problem over a closed interval
[x,, x v} shown in Fig. 1, in which there are N
grid points with coordinates x; for which step
size h=x ,,,—x; DBellman et al.™ assumed
that a function f(x) is sufficiently smooth over

the closed interval [x,, x 5] so that its first

P y=1(x)

» X

Fig. 1 First order derivative of y=f(x) with step
size }
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order derivative f o) at the grid point x; can

be approximated by the following formulation.

fobk)= /ZNla g f@x) for i=1,2,-. N (D

where f(x ) represents the function value at
x; and a; are the weighting coefficients of
first order derivative.

Once the weighting coefficients are determined,
it is easy to use the function values to compute
the derivatives. The determination of weighting
coefficients ¢ ; in Eq. (1) is a key procedure in
DQ approximation. There are several approaches
that weighting coefficients can be efficiently
computed by employing some explicit formu—
lations. Herein, Quan and Chang's approach is
which
polynomials are used as the test function. The

chosen in Lagrange interpolation

formulations to compute the weighting coeffi—

cients ¢ ; are as follows.

x; Hle 1, k#ﬂ)_;c_L———i_ fOl' F#] (21)

(2.2)

2.2 Second and Higher Order Derivatives
The second order derivatives are easily

computed by merely substituting the first deri—
vative values to f (x ;) in Eq. (1) as the function
values. Then the newly computed f o) are now

the second order derivatives to the original

function values.
Second order derivative f »(x) at the grid
point x ; can be approximated by the following

formulation.

N
fob)=30,-f(x) for i=1.2,-.8 @

where b, are weighting coefficients of the

second order derivatives and are derived as

2 Xi—Xg
bu (”k 1}z*z/x___xk)

XjTxy 4.1
VG xi_xl) for j+;
bu_ZHk lk*z[ X—%x,
4.2

X(H1>,=k+l,1=#ix_l__l_7;)]
Similarly, weighting coefficients of the higher
order derivatives can be derived but not shown
in this study.

2.3 Grid Point Distribution
For applying DQ, the grid point distribution is

determined. Most useful grid point distributions
are! uniform grid; Chebyshev— Gauss—Lobatto
grid; and grid with coordinates chosen as the
Chebyshev

example, the uniform grid with A=x ;;;

roots of polynomials. As an

—x;
is already shown in Fig. 1. Herein, the uniform
grid is selected. The coordinate of grid point

x,; for the closed interval [x,,x,] is as

follows.

ximx F ARGy for j=1,2,,N ©)

N—1
where N is the number of grid points and the
term of (xy—x)/(N—1) is the uniform step
size .
All theories of this chapter are cited from
the work by Shu'*?.

3. Free Vibrations of Arch

3.1 Governing Equations
Free vibration problems are selected for

applying DQ to ND in structural analysis. The
sinusoidal arch is picked out as the objective
structure. The geometry of the symmetric
sinusoidal arch is defined in Fig. 2. The arch is
supported by hinged or clamped ends. Its span
length, rise, and shape of the middle surface

rok
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Fig. 2 Sinusoidal arch and its variables

are 7, p,and y={(x), respectively. The para—
meter g is a non—dimensional quantity by
which the chord length 1 is defined as 1=
(28+1)1 Its radius of curvature p a function
of the co—ordinate x, has an inclination ¢ With
the x—~axis. The subtended angle of arch is ,
and angles representing the directions of the
normal vectors at two ends are ¢ and g,
Also in Fig. 2 are the positive directions of
radial and tangential displacements, ,, and
and the positive direction of rotation g of
cross—section.

To facilitate the numerical studies, the non—
dimensional system parameters of &=x//,
2=y/l S=w/ll A=v/]l t=p/l f=h/l
and s= {/y are introduced. The co—ordinates,
the displacements, the radius and the rise are
normalized by span length ;, respectively. The
parameter s 1S the slenderness ratio in which
¥ is the radius of gyration of cross—section.

Differential equations governing in—plane free
vibrations of arch with the variable curvature
were derived by many researchers* ™, Among
these equations, the following differential equations
are selected from the work by Lee and Wilson®,
8" =e,8 +(eyts 1e,Ch)s”

+(e,—s *e,Ch 8 +(egt+s tesCh)o (6.1
H(1=s1Ch ezl + 5 e ,ChA

188/t SNSSHI=28/A 178 A 2%, 20074

A'=e,;8"+(s4C%—1)8" tez8+ el
L ) 6.2)
+s (63_1)Ck/]

where (')=g/d¢ and coefficients ¢ ,~e, are

as follows:
e1=5¢'/¢ 7.0
€, =28"/t—-8(L7/8) =2 (7.2)
ey=—(s)? 1.3
ey=—s" ¢y’ 7.4
es=2¢"/¢=8(L /D) P-(s8)*~1 7.5)
es=(st)* (7.6)
er=¢1(s*?) (7.7)
es=¢'[1+1/(s0 /¢ (7.8)
ey=10"/¢ (7.9

The eigenvalue, ie. ¢, in Eq. (6.1) and

(6.2) is frequency parameter defined as
Ck=0)k$21‘ m/(EA) (8)

where @, is frequency parameter, g(=1,2,3,
4} is mode number,
length, E
cross—sectional area, respectively.

The boundary conditions for the hinged
ends(gpg=¢; and ¢=¢ ) are 1=0, §=90
and §"’ =( . The boundary conditions of the

m 1S mass per unit
is Young's modulus and 4 is

clamped ends(¢= ¢, and ¢=¢ ) are A1=0,
=0 and & =0.
Governing equations introduced above can
now be solved numerically. First of all, the
in Egs. (7.1)~(7.9) are

computed before solving differential equations.

coefficients ¢ ,~e 9

3.2 Terms of Curvature

Calculation methods of coefficients e;~eq in
Egs. (7.1)~(7.9) are now discussed. When the
sinusoidal arch

functional equation of the

depicted in Fig. 2, ie. y=1(x), is given, these
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coefficients can be calculated explicitly. The
non—dimensional functional equation of sinusoidal
arch y=f(x) with /, p and gis expressed as

p=0b,sin(b,f+b3y)+f—b, 0<&<] 9.1)
where

blzf/(l_ Slnbg) (92)

by=n/(1+28) 9.3

by=nB/(1+28) 9.4)

Using Egs. (9.1)~(9.4) gives the functional
relationship between the polar co—ordinate ¢
and the rectangular coordinate &. See Fig. 2.
The result is

¢=1/2 —tan “'[b,b,cos(b,E+ by

10.1
P r<¢<dp 10D

or

E=b3'cos '[b7 by tan(n/2— )] — bbb

0<eé<]
¢ (10.2)

Note that ¢, and ¢, in Eq.(10.1) are
computed by merely substituting g=¢ and
g=1 into Eq.(10.1), respectively, so that
subtended angle g=g¢ p—¢,.

Now, radius of curvature ¢ at  any
co—ordinate & is obtained by using the
well—known equation, or

=1+ H ¥y o abn

where ( VY=d|d&
Using Egs. (9~(11), terms of the curvature

¢, ¢iand ¢ # are obtained mathematically as

follows :
¢=(1+ b3 b26%) 32/ (b b%b ) (12.1)
¢ i=—b5(1+56%656%) (1 + 756565
12.2)

+3b56%56%)/ (676%b)

¢ F=(1+0616%6%) L1+ b3 656%)
x(1+ b5 6%6%+36%0%b%)
+3625%65(1+ 6% 536% +36% 25%) (12.3)
— 46363651+ 63 6%0%) +302/8
x(1+6716%6%) A+RABH
+3636369)1 /(536%6%)

where
by=sin (b,E+b3) (12.4)
bs=cos (byE+b3) 12.5)

As the
procedure for calculating terms of the curvature

discussed  above, mathematical
are complicated and cumbersome, and also takes
very much time. It is expected that obtaining
more higher derivatives is more complicated
and takes more time, and there should be
some possibility to be led to wrong results.
Furthermore, derivatives ¢ and giz' of Egs.
(12.2) and (12.3) can not be used yet directly
for because

calculating coefficients e,~eyq

derivatives ¢ and ¢ are needed rather than
derivatives ¢ and i This means that one
more step is needed in order to transfer
derivatives with respect to & to those with
respect to ¢ by using Eq. (10.1) or (10.2),
which is also sometimes complicated and
cumbersome.,

Meanwhile, the radius ¢ is easily computed
in this study, since ¢ expressed in Eq. (11)
composed with 7 and i is calculated by DQ.
Once ¢ is obtained, both ¢ and ¢ are
obtained by DQ. Subsequently, -coefficients
e,~ey in Egs. (6.1) and (6.2) are computed.

Once again, it is accentuated that structural
parameters such as the coefficients e,~eq
are computed by only DQ omitting complicated
and cumbersome procedures discussed above
for obtaining derivatives

(12.1)~(12.3).

such as Egs.

PRASESSHE=ET/A 17 R A2 3F, 2007d/189
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3.3 Computing Procedure
In order to calculate the coefficients e,~eqy,

terms of curvature ¢, ¢ and ¢’ are calculated
approximately by DQ. The calculating procedure
is summarized as follows:

(1) Arch parameters f£ g and s are input.
Number p in DQ is input.

(2) Set of grid points ¢ is calculated by
Egs. (5) and (10.1).

(3) Polar co-ordinate ¢, is selected from
the set of ¢.

(4) Rectangular co-—ordinate g, corres—
ponding ¢, is calculated by Eq. (10.2).

(5) Set of grid points ¢ is calculated by Eq.
(5) for which set of g has to include ¢; obtained
in step 4).

(6) Set of the co—ordinates 3 corresponding
¢ obtained in step 5) is calculated by Eq. (9.1).

(7) Derivatives ,i and i at & are
calculated by DQ. See Egs. (1) and (3).

(8) Radius gat g namely at 4, is calculated
by Eq. (11).

(9) After calculating all & derivatives ¢/
and e at each grid point ¢; are computed by
DQ.

(10) Coefficients ¢,~e, at g, are computed
by Egs. (7.1)~(7.9).

Once coefficients are computed, differential
Egs. (6.1) and (6.2) subjected to the boundary
conditions can now be solved numerically and

Table 1 Convergence analysis

frequency parameters C, are obtained. In this
study, the
search methods

the solution methods readers can
refer the work by Lee and Wilson®.

Runge—Kutta and determinant

“ are used. For understanding

in detail,

4. Numerical Examples and Discussion

4.1 Convergence Analysis

Accuracies of ND are absolutely affected by
the step size j which can be obtained by the
number of grid points N as shown in Fig. 1. It
is general that the appropriate }, is estimated
by the convergence analysis in this kind of the
approximation problems.

Prior to executing numerical examples,
convergence analysis on terms of curvature is
done. Shown in Tablel are the terms of
curvature ¢, ¢ and ¢’ calculated by varying
numbers N=11, 21, 41, 51 and 101. Then the
step size j is obtained by the Eq. (5). System

parameters used in calculation are £=0.3, g
=05 and ¢ ,=¢ ,+ /10 =0.891

The results with the six digit figures are
presented. In case of ¢ calculation, using N
=11 gives accuracy of six significant figures
and calculations of ¢ and ¢’ need N=41 for
the accuracy of six significant figures. More
N should be needed for
achieving same accuracy in calculating higher

greater number

derivatives.
Consequently, it is very important to select

the suitable number N after convergence
Terms of curvature o .
N analysis is executed. Hereafter, N=01 is chosen
{ ¢ ¢

11 +0.972843 —-3.05686 +1.84053 Table 2 Comparison of ¢, ¢ and ¢’

21 +0.972843 -3.03080 +1.76550 Terms DQ Exact

41 +0.972843 -3.03074 +1.76547 ¢ +0.972843 +0.972843

51 +0.972843 —-3.03074 +1.76547 ¢’ -3.03074 -3.03075
101 +0.972843 —-3.03074 +1.76547 ¢ +1.76547 +1.76549

* f=0.3, 8=0.5 ¢,=0.891

* f=03v ,3=05v ¢,=0.891

190/8t2 2878533 =2 /A 174d A2 F, 20074
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for numerical examples.

4.2 Comparison of Terms of Curvature
Terms of curvature ¢, ¢ and ¢

computed by DQ and these values are compared
with those computed by Egs.(12.1)~(12.3)
explicitly where it is recalled that latter ones

are

are exact. The results are shown in Table 2 in
which system parameters are f=0.3, g=0.5
and ¢ ;=0.891. Two results are agreed closely

within at least five significant figures. It is
DQ

engineering systems.

cleared that is practical in the real

4.3 Comparison of Coefficients
Governing differential Eqgs. (6.1) and (6.2)

have the coefficients ¢,~¢, with which terms

of curvature ¢, ¢ and ¢’ are composed. It
is natural that frequency parameters can be
calculated accurately only if these coefficients
are obtained accurately. For wvalidating that
coefficients obtained by DQ are sufficiently
exact, both coefficients by DQ and exact ones
are compared in Table 3
parameters are f=0.3, p=0.5, ¢=100 and ¢,

in which system

=0.891. Two results are agreed quite well
within at least four significant figures.

Table 3 Comparison of coefficients

Coeff. DG Exact
e -15.5768 -15.5768
o —43.3479 —43.3482
e —10566.1 —10566.1
e +29484.5 +29484.5
& —9506.59 -9506.59
P +111642000. +111642000.
& —0.000329172 -0.000329172
& -3.11536 —3.11536
2 —-3.11536 -3.11536

* f=0.3, $=0.5 s=100, ¢,=0.891

4.4 Comparison of Frequency Parameters
For verifying application of DQ to ND,

frequency parameters, C,(k=1,2), computed
by both DQ
computed. Firstly, coefficients ¢,~e¢, in the
differential Eqs. (6.1) and (6.2) are calculated
by both DQ and functional method separately.

and functional method are

Secondly, differential equations with coeffi—
cients by DQ and functional method are solved
two results of

separately. Finally, C, are

compared. In calculating (, system para—

meters A=0.5 and =100 with varying £=0.1,
0.2, 0.3, 0.4 and 0.5 are applied. The boundary
conditions of hinged—hinged and clamped—
clamped ends are considered. The results are
in Table4 which shows that G
values by DQ agree quite well with those by
the functional method. It is clearly fact that ND
using DQ leads accurate results in calculating
of the
structure such as arch.

presented

frequencies curved member—like

Table 4 Comparison of € ,(k=1, 2) between DQ

and Exact( 3=0.5, §=100)
+ Hinged—hinged ends

C, C,

s DQ Exact DQ Exact
0.1 38.16 38.42 60.07 60.23
0.2 30.91 30.84 71.99 71.85
0.3 26.00 26.15 63.70 63.68
0.4 21.63 21.85 55.11 55.02
0.5 15.42 15.36 40.93 41.07
+ Clamped—clamped ends

C, Cy

4 DQ BExact DQ Exact
0.1 56.14 56.98 66.99 66.79
0.2 46.54 46.71 93.19 93.04
0.3 27.83 27.98 70.85 70.79
0.4 26.58 26.72 64.34 64.59
0.5 18.98 19.07 48.89 48.76

TSI =T/A 173 A28, 20074/191
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Table 5 Comparison of (, between this study

and reference( f=0.25, $=200)
‘Hinged—hinged ends

Data Frequency parameter, (',

source

k=1 k=2 k=3 | k=4
This study 26.7 64.7 118. 184.
Reference (4) 26.6 64.6 117. 183.

+Clamped—clamped ends

Frequency parameter, A
k=1 k=2 k=3 k=4
This study 40.9 85.2 147, 217.

Data
source

Reference (4) 40.8 85.0 147. 216.

4.5 Comparison of Frequency Parameters
with Reference Value
For comparing frequency parameters (C,

calculated in this study with those of reference(4),

the lowest four ¢, (#=1,2,3,4) of the para—
bolic arch are presented in Table 5, whose
system parameters are f=0.25 and =200. It
is noted that the parameter g is unneeded
since the chord length [ is not available for
the parabolic arches.

Two results are agreed very well with each
other. From this table and others discussed
above, it is finally concluded that ND using DQ
can be practically utilized in the analyses of
structure especially built with the curved
member—like structure such as arch.

5. Concluding Remarks
Structural parameters composed with the
derivatives of functional equation of curved

play an important role in the
structural analysis. For the curved member—

member

like structures with the variable curvature, it is
complicated and also time consuming to obtain
derivatives of functional equation explicitly in
itself. Application of numerical differentiation

quadrature(DQ) is
investigated in this paper. Herein, free vibration

using the differential
problems of the sinusoidal and parabolic arches
are chosen for numerical examples. Structural
parameters such as curvatures, derivatives of
curvature and coefficients of governing
equations are computed numerically by DQ. All
results obtained herein are agreed quite well
with those of exact solutions. Also frequency
parameters of this study are agreed closely
with those of reference values. It is concluded
that numerical differentiation using DQ can be
practically utilized to analyses of the curved
member—like structures without the functional

procedures.
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