References
- J. C. Abbott, Sets, Lattices and Boolean Algebras, Allyn and Bacon, Boston, 1969
- G. Birkhoff, Lattice Theory, Amer. Math. Soc. Colloq. Publ., Vol. 25, second edition 1961; third edition, 1967, Providence
- G. Gratzer, Universal Algebra, 2nd edition, Springer-Verlag, New York Inc., 1979
- Y. B. Jun and H. S. Kim, On ideals in subtraction algebras, Sci. Math. Jpn. Online, e-2006 (2006), 1081-1086
- Y. B. Jun, H. S. Kim, and E. H. Roh, Ideal theory of subtraction algebras, Sci. Math. Jpn. Online e-2004 (2004), 397-402
- Y. B. Jun and K. H. Kim, Prime and irreducible ideals in subtraction algebras, Ital. J. Pure Appl. Math. (submitted)
- B. M. Schein, Difference Semigroups, Comm. Algebra 20 (1992), 2153-2169 https://doi.org/10.1080/00927879208824453
- B. Zelinka, Subtraction Semigroups, Math. Bohemica 120 (1995), 445-447
Cited by
- A NOTE ON COMPLICATED SUBTRACTION ALGEBRAS vol.29, pp.3, 2007, https://doi.org/10.5831/HMJ.2007.29.3.465
- ORDER SYSTEMS, IDEALS AND RIGHT FIXED MAPS OF SUBTRACTION ALGEBRAS vol.23, pp.1, 2008, https://doi.org/10.4134/CKMS.2008.23.1.001
- ANSWERS TO LEE AND PARK'S QUESTIONS vol.27, pp.1, 2012, https://doi.org/10.4134/CKMS.2012.27.1.001
- DERIVATIONS ON SUBTRACTION ALGEBRAS vol.24, pp.4, 2009, https://doi.org/10.4134/CKMS.2009.24.4.509
- d-ALGEBRAS WITH COMPLICATED CONDITION vol.31, pp.4, 2009, https://doi.org/10.5831/HMJ.2009.31.4.489
- -derivations on complicated subtraction algebras vol.20, pp.8, 2017, https://doi.org/10.1080/09720529.2017.1308663