DOI QR코드

DOI QR Code

GALOIS THEORY OF MATHIEU GROUPS IN CHARACTERISTIC TWO

  • 발행 : 2007.01.31

초록

Given a field K and a finite group G, it is a very interesting problem, although very difficult, to find all Galois extensions over K whose Galois group is isomorphic to G. In this paper, we prepare a theoretical background to study this type of problem when G is the Mathieu group $M_{24}$ and K is a field of characteristic two.

키워드

참고문헌

  1. S. Abhyankar, Ramification theoretic methods in algebraic geometry, Princeton University Press, 1959
  2. S. Abhyankar, Mathieu group coverings in characteristic two, C. R. Acad. Sci. Paris Ser. I Math. 316 (1993), no. 3, 267-271
  3. S. Abhyankar, Galois embeddings for linear groups, Trans. Amer. Math. Soc. 352 (2000), no. 8, 3881-3912 https://doi.org/10.1090/S0002-9947-00-02438-7
  4. S. Abhyankar and I. Yie, Some more Mathieu group coverings in characteristic two, Proc. Amer. Math. Soc. 122 (1994), no. 4, 1007-1014 https://doi.org/10.2307/2161167
  5. S. Abhyankar and I. Yie, Small Mathieu group coverings in characteristic two, Proc. Amer. Math. Soc. 123 (1995), no. 5, 1319-1329 https://doi.org/10.2307/2161116
  6. J. H. Conway and N. J. A. Sloan, Sphere packings, lattices and groups, Springer Verlag, New York, 1993
  7. D. Saltman, Generic Galois extensions and problems in field theory, Adv. Math. 43 (1982), no. 3, 250-283 https://doi.org/10.1016/0001-8708(82)90036-6
  8. I. Yie, Mathieu group coverings and Golay codes, J. Korean Math. Soc. 39 (2002), no. 2, 289-317 https://doi.org/10.4134/JKMS.2002.39.2.289