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BIJECTIVITY BETWEEN COIN-STACKS AND
PERMUTATIONS AVOIDING 132-PATTERN

HYEONG-KWAN JU* AND SOONCHUL PARK

ABSTRACT. We have defined a bijective map from certain set of coin-
stacks onto the permutations avoiding 132-pattern and give an algorithm
that finds a corresponding permutation from a given coin-stack. We also
list several open problems which are similar as a CS-partition problem.

1. Introduction

By an ordinary coin-stack or, simply, a coitn-stack we mean an arrangement
of n coins in rows such that the coins in the first row form a single contiguous
block, and that in all higher rows each coin touches exactly two coins from the
row beneath it. In addition, if first row contains exactly k coins, we say that
the coin-stack is of the form (n, k)-stack or (n, k)-fountain ([6, 8, 10]).

We see that there is a one-to-one correspondence between coin-stacks and
certain kinds of integer-partitions given as in the following. Let n and k
be given nonnegative integers. Then how many different integer sequences
(dy,da, ..., dy) satistying

(Z) d1=1, diZIfOI‘iZQ,...,k,
(i) n=di+dy+ -+ di,
(7,21) di+1——diglforizl,Z,...,k——l

do we have?

Let us call such a sequence (dq,ds,...,dx) a coin stack-partition, shortly,
CS-partition.

For example, as in the Figure 1, the coin-stack can be written as a CS-
partition

30=14+2+14+24+34+3+4+14+24+24+3+3+241
from the right side to the left side.
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FIGURE 1. An example of (30, 14)-stack (ordinary coin-stack)

Let [n] = {1,2,...,n} for an integer n which is greater than or equal to 1,
and a = (ala a2, . .. 7am) € [pl]mwB = (ﬂlaﬁ?: ce aﬁm) € [p2]m We say that
a and 3 have same relative order if for all 1 < ¢ < j < m one has o; < ¢ if
and only if ; < B;. For two permutations ¢ € S; and 7 € S, (k < n), an
occurrence of o in 7 is a subsequence 1 < i3 < i5 < -+ < 4 < n such that
(Tiy s Tigs - - -y sy, ) and o have same relative order; in such a context o is usually
called the pattern. We say that 7 is a permutation (in S,,) avoiding o- pattern
if there is no occurrence of ¢ in 7.

Let f(n, k) be the number of (n, k)-stacks and its ordinary generating func-
tion

Flz,y) = Z f(n, k)z"y.

n,k>0
It turned out that ([2, 6])

and F(l,y) = 1==% 3;’43’, which is known as a Catalan function (see 3] for
details). It is well known that the number of n-permutations avoiding 132-
pattern is again a Catalan number C, = ;%_-1 ( 2: ) (See, for example, [1]).
Note that

2y

It is our purpose here to give a one-to-one correspondence between n-permu-
tations avoiding 132-pattern and coin-stacks with n coins in the bottom row
(that is, (*,n)-stacks).

1_‘/—1_4y=icy".
=0

2. Some notations and main results
Let n be a positive integer greater than 1, and

M) ={(i,j) e Nx N1 <i<j<n},
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FIGURE 2. A Floated Coin-Stack (FCS) for a permutation
p=(14,12,10,9,11,8,13,4,5,3,6,7,1,2)

S(n,132) is the set of all n-permutations avoiding 132-pattern. Now, for p =
p1P2 - Pn € S(n,132), we define ap : M(n) — {0,1} by

. 1 ifp; <p;
whin={} dn<n

0 otherwise.

Lemma 1. With the notations above, the following holds:
(@) Ifay(i,j)=1andi+1<j thenap(i+1,j) =1
(Avoidance of 132-pattern)
(b)  If ap(i,j) =1 = op(4, k), then ap(i, k) =1.
(Transitivity)

Proof. (a) When a,(i,j) =1land i+1 < 7, if ap(i+1,5) = 0 then p;y1 > p; >
p;. This implies that the permutation p has 132-pattern.
(b) Obvious. O

Definitions. A floated coin-stack (simply, FCS) is a map «, : M(n) — {0,1}
satisfying conditions (a) and (b) in Lemma 1. The bottom row (n cells) of the
FCS can be regarded as permutation p = pyps---p, itself. In Figure 2, we
regard 14 cells in the bottom row as

p=(p1,p2,--.,p14) = (14,12,10,9,11,8,13,4,5,3,6,7,1,2)
in 5(14,132).

Let ap be an FCS. If op(4,5) = 1, we call the position (4, ) the cell of p,
and denote it by (¢,7)p. If ap(1,4) = 0p(2,5) = -+ = ap(t — 1,5) = 0 and
ap(i,j) = op(i+1,5) =+ = op(j — 1,4) = 1, then we call all the cells (,j),
with ¢ <1 < j—1 the j-branch of p, and (¢, j), the head cell of the j-branch. In
this case, we also call the set of all (k, ])-positions with ¢ < k < I < j the shadow
of the j-branch of p. For example, in Figure 2 there are six branches(i.e., 5-,
7-, 9-, 11-, 12- and 14-branch). The 5-branch is a subset of the shadow of the
7-branch there.
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Lemma 2. With the condition above, if 1 < k < j and (i,7)p is the head cell
of the j-branch of p in S(n,132), then either (a) there is no k-branch, or (b)
k-branch is the subset of the shadow of the j-branch if there is.

Proof. Let the head cell of the k-branch be outside the shadow of the j-branch,
where i < k < j. Then it must be that a,(i — 1,k) = 1 = ap(k, 5). By Lemma
1(b), ap(i — 1,4) = 1, which contradicts that (4,7), is the head cell of the
j-branch. 0

For two integers k; and ko with ky < ko, let [k1, k2] be the set of all integers
between k; and k2 including both ends.

Lemma 3. Let v be an FCS, i < 1y < ls < k and i,l1,lz-branches be in the
shadow of k-branch in ~y. Also let (5;,1;)(i = 1,2) be the head cells of l;-branch,
respectively. Then ja ¢ [j1 + 1,11].

Proof. Suppose contrary to the conclusion, that is, jo € [j1 + 1,/1]. Then
v(j1,11) = 1 = vy(l1,1l2). By Lemma 1(b), ¥(j1,l2) = 1, which contradicts that
head cell of l3-branch is (jg,l2) and j2 > 7;. O

Example. Consider a coin-stack shown as in Figure 3. This is not an FCS

since Lemmal(b) is not satisfied. Note that this coin-stack does not correspond
to a 9-permutation avoiding 132-pattern.

Remark. From Lemma, 3, jo is either j, < j; (the shadow of the l;-branch is
a subset of that of the I,-branch) or j» > I} (the shadow of the /;-branch and
that of the ly-branch are disjoint).
Now, let 8 : M(n) — {0,1} satisfy the following:
(OCS) If B(5,5) =1, then j=i+1or 85,5 —1) =1=B(i +1,5).
Note that OCS stands for an ordinary coin-stack. We can see that every
ordinary coin-stack can be regarded as a map 8 : M(n) — {0, 1} satisfying the
condition (OCS). Let
U = {ap : M(n) — {0,1}|p € S(n,132)},
and
® = {M(n) — {0,1}|0 satisfies the condition (OCS)}.
Define ¢ : ¥ — ® as the following: For fixed 1, let n; = |{j € [n]|ap(i,5) =
1}|. Define 8 = ¢(a,) (Left Bottom-projection or LB-projection) by
. 1 fori+1<k<i+ny
ﬂ(l’k)—{ 0 form+i<k<n.
Then the map ¢ is well-defined since if §(s,t) = 1 and s + 1 < ¢ then
t—s < mg, 80 B(s,t—1) =1, and ns—nsyy <1 (by Lemma 2), so 8(s+1,t) = 1.

Theorem 4. (1) ¢ : S(n,132) — ¥ defined by Y(p) = o, is a one-to-one
function.
(2) ¢: ¥ — @ defined by LB-projection is a bijection.
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FIGURE 3. (1-9)-block

Proof. (1) It is obvious that 1 is surjective. For injectivity, if p # ¢ in S(n, 132),
then we may assume that there are 4 and j with p; < p; but ¢; > ¢; and
ap(i,J) =1 # 0 = oy{i, j). Hence o = 9(p) # ¢(q) = .

(2) We define a map p : & — ¥ such that ¢ o p and p o ¢ are identities.
Let 8 be in ®. So we can find n;’s (i = 1,...,n). Note that n, = 0 and
ne—ner1 <1 (k=1,2,...,n—1).

Here we introduce some terminologies. For 8 € ®, let (i — j)-block be a
restricted map (or its image) of coin-stack 3 to the set L(i, j), where

L, 7)) ={k1)] i<k<i<jBmm+1l)=1fori<m<j—1,
Bli-1,9)=0=p6(,5+ 1)}

In the OCS given as in Figure 1 there are three blocks. These are (2 —7)-block,
(8 — 12)-block, and (13 — 14)-block.

We will define v = p(8) : M(n) — {0,1}.

We also define the Right Top-projection or RT-projection. This is, in fact,
an inverse map to the LB-projection.

First of all, we restrict our concern to each of blocks, say (i —j)-block L(3, 7).
Consider the restriction

YL@,y + L(3,5) — {0,1} and n® = (ng,n41,...,mj-1 = 1,n; = 0).

Define v(l,5) := 1 for i <1 < j — 1, which is a j-branch of v. Let n(!) =
(n; —1,ni41—1,...,n;2—1,0,0). n{ has sub-blocks, and on each sub-block
we construct next branch of v in the same manner. Continue this work until
there are no incomplete blocks left.

Example. (1) Consider a (1—9)-block as shown in Figure 3. Choose right-top
cells on each line to make a 9-branch.

(2) Make a 9-branch and choose next right-top cells as in Figure 4.

(3) Make a 5-branch and a 8-branch. No incomplete blocks are left(3- and
4-branches completed too).

(4) Figure 6 is an RT-projection of Figure 3.
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i\jr1,2|3[4|5|6|7|8[9 1011|1213 | 14
1 {ps{0{0O/0O0|O}O]JO}|O}D} O 0 0 0 0
2 pl1f0|l0OlO0O]OlO]O0O] O 0 0 0 0
3 p3|1[1]0{0]0;0)| O 0 0 0 0
4 psi 11 [0]0]01O0 0 0 0 0
5 ps| 1[0 0[0 |0 0 0 0 0
6 pe| 11010 0 0 0 0 0
7 p; 1 01 0| O 0 0 0 0
8 ps | 1| 1 1 0 0 0
9 po | 1 1 0 0 0
10 po| 1 1 0 0
11 pi1 | 1 0 0
12 pia| O 0
13 P13 1
14 P14

i\j{112(3{4{5|6 789 10|11 ]12]13 ] 14
1 {;m|O0|lOlOf[O]O]|0jJ0]0]| O 0 0 0 0
2 p2 ! 0] 0|00 {1)0]|]0] O 0 0 0 0
3 p3| 01101 ]0;0]| O 0 0 0 0
4 pal1]O[1]0[0} O 0 0 0 0
5 ps (01 {000 0 0 0 0
6 pel 1 O[O ] O 0 0 0 0
7 pr | 0O10] 0O 0 0 0 0
8 pe| 1| 0O 1 1 0 0
9 pg| O 1 1 0 0
10 po| 1 1 0 0
11 P11 1 0 0
12 pi2 O 0
13 piz | 1
14 P14

TABLE 1. 0-1-code tables(OCS of 8 = ¢(ep) : top, FCS
of ap : bottom) for the given permutation p = (14,12,10,
9,11,8,13,4,5,3,6,7,1,2) in $14(132)

The number of cells is finite in 8. Hence, this work will be completed after
finite number of times. Obviously this v satisfies conditions (a) and (b) of
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FIGURE 5. 5- and 8-branches completed

Lemma 1. Therefore v = p(3) is a floated coin-stack and p is a bijection (since
it is an inverse map of ¢). This completes the proof of (2). g

3. Algorithm for finding p in S(n,132) from a floated coin-stack

Let v be a floated coin-stack. We seek p in S(n,132) such that ¢(p) = +.
We define a mazbranch by the branch which is not in the shadow of other
larger branch, and a maxblock by the block made by the maxbranch using
LB-projection.
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Ficure 6. RT-projection of Figure 3.

begin Algorithm

Step 1: Arrange maxblocks in reverse order.
Step 2: For each maxblock, we do the following.
For an (i — j)-maxblock,
Step 2-1: Take out p; in (p;,Pit1,---,Pj—1,P;), and adjoin it to
the right side of the resulting sequence, producing (p;, Dit1s - - - Pj—1)Pj-
Step 2-2: If there is no j — 1-branch, take out p;_1 in (ps, pit1,.- -,
pj—1), and adjoin it to the left side of the resulting sequence, producing p;—1(p;,
Dit1,.--,Pj—2), and return to the Step 1 with the block (p;, pit1, -, Pj—2)-
Otherwise, return to the Step 1 with the block (p;, piy1,...,Dj-1).
Step 3: Put together the results obtained in Step 2, which corresponds to
123 . n.
Step 4: Find permutation p.

end Algorithm

Example. Begin with (p1, p2, p3, P4, Ps, D6, D7, P8, P9, P10, P11, P12, P13, P1a) of
the FCS given in Figure 2.
Step 1: (p13,p14)(Ps; P9, P10, P11, P12) (P2, D3, P4, P55 6, D7) (P1)
Step 2: (1) (p13,p14) — (P13)P1a — P13P14
(2) (Ps,pg,Pm,Pn,pu) —_ (P87P97p10,P11)P12 —
(ps,Pg,ptto)pnpm - Plo(ps,m)pllpu B
plo(ps)pgpupm — p1oPsPoP11P12
(3) (p2,p3, P4, 05, P6,07) — (P2, D3, P4, D5, Ps)P7 —
106(1172,2)3,274,1'5)177 - pe(pa,p4ap5)p2p7 —
” pe(P3, P4)PsPeP7 — PePa(P3)PsP2D7 — PePaP3P5P2P7
4) ;1
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Step 3: p13P14P10P8PIP11P12P6PaP3PsP2P7PL = 123 - -+ (13)(14)
Step 4: p = (14,12,10,9,11,8,13, 4,5,3,6,7,1,2).

4. Further problems

First of all, we can interpret a particular pattern avoidance of the type
Sn(132)N S, (1) for some 7 € Sy, into a certain type of the ordinary coin-stacks.
References [2] and [3] has dealt with and mentioned about this a little. Recently,
first author of this article discovered that certain types of ordinary coin-stacks
appeared in [3] are related with Chebyshev polynomials of the second kind.

Next, there are several partition problems similar to CS-partitions. One of
them is so-called restricted growth functions, which is defined as follows:

(i) di=1 d;>1fori=2,...,k,
(1) n=di+do+- - +d,
(’Ll’l) d¢+1~max{d1,d2,...,di}§ 1f01"i=1,2,...,k—1

These were studied by Milne ([5]), and Stanton and White ([9]) introduced
List Algorithm, Rank Algorithm and Unrank Algorithm. Restricted growth
functions are related with the number of set-partitions, which is again can be
expressed in terms of the Bell number or the Stirling number of the second
kind.

Another partition is the (r, p)-histogram, which is defined as follows:

() di=r,di>1fori=2,...,k,
(1) m=di+do+-- +dx,
(i6)) dig1~di <pfori=1,2,... k-1

These were studied by Merlini and Sprugnoli ([4]). Generating function
of (1, p)-histogram has certain relations with Schur polynomials. (See [7] for
details.)

Studying the following partition problems seems to be curious and interest-
ing:

(’L) d1:7‘, d,-ZlforiZZ,...,k,

(Z’L) n:d1+d2+~~+dk,

(#31) dip1 — max{dy,da,...,d;} <pfori:=1,2,...,k—1
or

(Z) d1=7', diZIfOI‘i=2,...,k,
(’LZ) n=d; +dp+ - +dg,
(ZZ’L) di+1 —max{di_m,di_mﬂ,...,di} Sp for i = 1,2,...,]{) - 1.

Are there any combinatorial meaning for various (r, p, m), like coin-stacking
in CS-partitions or set-partitions in restricted growth functions? Even for the
simple case where r = p = m = 1 in the last problem, the answer is unknown
so far.
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