BIJECTIVITY BETWEEN COIN-STACKS AND PERMUTATIONS AVOIDING 132-PATTERN

HYEONG-KWAN JU* AND SOONCHUL PARK

ABSTRACT. We have defined a bijective map from certain set of coinstacks onto the permutations avoiding 132-pattern and give an algorithm that finds a corresponding permutation from a given coin-stack. We also list several open problems which are similar as a CS-partition problem.

1. Introduction

By an ordinary coin-stack or, simply, a coin-stack we mean an arrangement of n coins in rows such that the coins in the first row form a single contiguous block, and that in all higher rows each coin touches exactly two coins from the row beneath it. In addition, if first row contains exactly k coins, we say that the coin-stack is of the form (n, k)-stack or (n, k)-fountain ([6, 8, 10]).

We see that there is a one-to-one correspondence between coin-stacks and certain kinds of integer-partitions given as in the following. Let n and k be given nonnegative integers. Then how many different integer sequences (d_1, d_2, \ldots, d_k) satisfying

(i)
$$d_1 = 1, d_i \ge 1 \text{ for } i = 2, \dots, k,$$

(ii) $n = d_1 + d_2 + \dots + d_k,$

(ii)
$$n = d_1 + d_2 + \cdots + d_k$$
,

(iii)
$$d_{i+1} - d_i \le 1$$
 for $i = 1, 2, \dots, k-1$

do we have?

Let us call such a sequence (d_1, d_2, \ldots, d_k) a coin stack-partition, shortly, CS-partition.

For example, as in the Figure 1, the coin-stack can be written as a CSpartition

$$30 = 1 + 2 + 1 + 2 + 3 + 3 + 4 + 1 + 2 + 2 + 3 + 3 + 2 + 1$$

from the right side to the left side.

Received November 3, 2005.

²⁰⁰⁰ Mathematics Subject Classification. 05A15.

Key words and phrases. CS-partition, pattern avoidance, ordinary coin-stacks (OCS), floated coin-stacks (FCS), LB(or RT)-projection.

^{*}The research of this author was financially supported by Chonnam National University.

FIGURE 1. An example of (30, 14)-stack (ordinary coin-stack)

Let $[n] = \{1, 2, ..., n\}$ for an integer n which is greater than or equal to 1, and $\alpha = (\alpha_1, \alpha_2, ..., \alpha_m) \in [p_1]^m$, $\beta = (\beta_1, \beta_2, ..., \beta_m) \in [p_2]^m$. We say that α and β have same relative order if for all $1 \le i < j \le m$ one has $\alpha_i < \alpha_j$ if and only if $\beta_i < \beta_j$. For two permutations $\sigma \in S_k$ and $\pi \in S_n$ (k < n), an occurrence of σ in π is a subsequence $1 \le i_1 < i_2 < \cdots < i_k \le n$ such that $(\pi_{i_1}, \pi_{i_2}, ..., \pi_{i_k})$ and σ have same relative order; in such a context σ is usually called the pattern. We say that π is a permutation (in S_n) avoiding σ - pattern if there is no occurrence of σ in π .

Let f(n, k) be the number of (n, k)-stacks and its ordinary generating function

$$F(x,y) = \sum_{n,k>0} f(n,k)x^n y^k.$$

It turned out that ([2, 6])

$$F(x,y) = \frac{1}{1 - \frac{xy}{1 - \frac{x^2y}{1 - \frac{x^3y}{1 - y}}}}$$

and $F(1,y) = \frac{1-\sqrt{1-4y}}{2y}$, which is known as a Catalan function (see [3] for details). It is well known that the number of *n*-permutations avoiding 132-pattern is again a Catalan number $C_n = \frac{1}{n+1} \binom{2n}{n}$. (See, for example, [1]). Note that

$$\frac{1-\sqrt{1-4y}}{2y} = \sum_{n=0}^{\infty} C_n y^n.$$

It is our purpose here to give a one-to-one correspondence between n-permutations avoiding 132-pattern and coin-stacks with n coins in the bottom row (that is, (*, n)-stacks).

2. Some notations and main results

Let n be a positive integer greater than 1, and

$$M(n) = \{(i, j) \in N \times N | 1 < i < j < n \},$$

FIGURE 2. A Floated Coin-Stack (FCS) for a permutation p = (14, 12, 10, 9, 11, 8, 13, 4, 5, 3, 6, 7, 1, 2)

S(n, 132) is the set of all *n*-permutations avoiding 132-pattern. Now, for $p = p_1 p_2 \cdots p_n \in S(n, 132)$, we define $\alpha_p : M(n) \to \{0, 1\}$ by

$$\alpha_p(i,j) = \begin{cases} 1 & \text{if } p_i < p_j \\ 0 & \text{otherwise.} \end{cases}$$

Lemma 1. With the notations above, the following holds:

- (a) If $\alpha_p(i,j) = 1$ and i+1 < j then $\alpha_p(i+1,j) = 1$ (Avoidance of 132-pattern)
- (b) If $\alpha_p(i,j) = 1 = \alpha_p(j,k)$, then $\alpha_p(i,k) = 1$. (Transitivity)

Proof. (a) When $\alpha_p(i,j) = 1$ and i+1 < j, if $\alpha_p(i+1,j) = 0$ then $p_{i+1} > p_j > p_i$. This implies that the permutation p has 132-pattern.

Definitions. A floated coin-stack (simply, FCS) is a map $\alpha_p: M(n) \to \{0,1\}$ satisfying conditions (a) and (b) in Lemma 1. The bottom row (n cells) of the FCS can be regarded as permutation $p = p_1 p_2 \cdots p_n$ itself. In Figure 2, we regard 14 cells in the bottom row as

$$p = (p_1, p_2, \dots, p_{14}) = (14, 12, 10, 9, 11, 8, 13, 4, 5, 3, 6, 7, 1, 2)$$
 in $S(14, 132)$.

Let α_p be an FCS. If $\alpha_p(i,j)=1$, we call the position (i,j) the cell of p, and denote it by $(i,j)_p$. If $\alpha_p(1,j)=\alpha_p(2,j)=\cdots=\alpha_p(i-1,j)=0$ and $\alpha_p(i,j)=\alpha_p(i+1,j)=\cdots=\alpha_p(j-1,j)=1$, then we call all the cells $(l,j)_p$ with $i\leq l\leq j-1$ the j-branch of p, and $(i,j)_p$ the head cell of the j-branch. In this case, we also call the set of all (k,l)-positions with $i\leq k< l\leq j$ the shadow of the j-branch of p. For example, in Figure 2 there are six branches(i.e., 5-, 7-, 9-, 11-, 12- and 14-branch). The 5-branch is a subset of the shadow of the 7-branch there.

Lemma 2. With the condition above, if i < k < j and $(i, j)_p$ is the head cell of the j-branch of p in S(n, 132), then either (a) there is no k-branch, or (b) k-branch is the subset of the shadow of the j-branch if there is.

Proof. Let the head cell of the k-branch be outside the shadow of the j-branch, where i < k < j. Then it must be that $\alpha_p(i-1,k) = 1 = \alpha_p(k,j)$. By Lemma 1(b), $\alpha_p(i-1,j) = 1$, which contradicts that $(i,j)_p$ is the head cell of the j-branch.

For two integers k_1 and k_2 with $k_1 \leq k_2$, let $[k_1, k_2]$ be the set of all integers between k_1 and k_2 including both ends.

Lemma 3. Let γ be an FCS, $i < l_1 < l_2 < k$ and i, l_1, l_2 -branches be in the shadow of k-branch in γ . Also let $(j_i, l_i)(i = 1, 2)$ be the head cells of l_i -branch, respectively. Then $j_2 \notin [j_1 + 1, l_1]$.

Proof. Suppose contrary to the conclusion, that is, $j_2 \in [j_1 + 1, l_1]$. Then $\gamma(j_1, l_1) = 1 = \gamma(l_1, l_2)$. By Lemma 1(b), $\gamma(j_1, l_2) = 1$, which contradicts that head cell of l_2 -branch is (j_2, l_2) and $j_2 > j_1$.

Example. Consider a coin-stack shown as in Figure 3. This is not an FCS since Lemma1(b) is not satisfied. Note that this coin-stack does not correspond to a 9-permutation avoiding 132-pattern.

Remark. From Lemma 3, j_2 is either $j_2 \leq j_1$ (the shadow of the l_1 -branch is a subset of that of the l_2 -branch) or $j_2 > l_1$ (the shadow of the l_1 -branch and that of the l_2 -branch are disjoint).

Now, let $\beta: M(n) \to \{0,1\}$ satisfy the following:

(OCS) If
$$\beta(i, j) = 1$$
, then $j = i + 1$ or $\beta(i, j - 1) = 1 = \beta(i + 1, j)$.

Note that OCS stands for an ordinary coin-stack. We can see that every ordinary coin-stack can be regarded as a map $\beta: M(n) \to \{0,1\}$ satisfying the condition (OCS). Let

$$\Psi = \{\alpha_p : M(n) \to \{0,1\} | p \in S(n,132)\},\$$

and

$$\Phi = \{M(n) \to \{0,1\} | \beta \text{ satisfies the condition (OCS)} \}.$$

Define $\phi: \Psi \to \Phi$ as the following: For fixed i, let $n_i = |\{j \in [n] | \alpha_p(i,j) = 1\}|$. Define $\beta = \phi(\alpha_p)$ (Left Bottom-projection or LB-projection) by

$$\beta(i,k) = \begin{cases} 1 & \text{for } i+1 \le k \le i+n_i \\ 0 & \text{for } n_i+i < k \le n. \end{cases}$$

Then the map ϕ is well-defined since if $\beta(s,t)=1$ and s+1 < t then $t-s \le n_s$, so $\beta(s,t-1)=1$, and $n_s-n_{s+1} \le 1$ (by Lemma 2), so $\beta(s+1,t)=1$.

Theorem 4. (1) $\psi: S(n, 132) \to \Psi$ defined by $\psi(p) = \alpha_p$ is a one-to-one function.

(2) $\phi: \Psi \to \Phi$ defined by LB-projection is a bijection.

FIGURE 3. (1-9)-block

Proof. (1) It is obvious that ψ is surjective. For injectivity, if $p \neq q$ in S(n, 132), then we may assume that there are i and j with $p_i < p_j$ but $q_i > q_j$ and $\alpha_p(i,j) = 1 \neq 0 = \alpha_q(i,j)$. Hence $\alpha_p = \psi(p) \neq \psi(q) = \alpha_q$.

(2) We define a map $\rho: \Phi \to \Psi$ such that $\phi \circ \rho$ and $\rho \circ \phi$ are identities. Let β be in Φ . So we can find n_i 's (i = 1, ..., n). Note that $n_n = 0$ and $n_k - n_{k+1} \le 1$ (k = 1, 2, ..., n - 1).

Here we introduce some terminologies. For $\beta \in \Phi$, let $(\mathbf{i} - \mathbf{j})$ -block be a restricted map (or its image) of coin-stack β to the set L(i, j), where

$$L(i,j) = \{(k,l) | i \le k < l \le j, \beta(m,m+1) = 1 \text{ for } i \le m \le j-1, \\ \beta(i-1,i) = 0 = \beta(j,j+1) \}.$$

In the OCS given as in Figure 1 there are three blocks. These are (2-7)-block, (8-12)-block, and (13-14)-block.

We will define $\gamma = \rho(\beta) : M(n) \to \{0, 1\}.$

We also define the Right Top-projection or RT-projection. This is, in fact, an inverse map to the LB-projection.

First of all, we restrict our concern to each of blocks, say (i-j)-block L(i,j). Consider the restriction

$$\gamma|_{L(i,j)}:L(i,j)\to\{0,1\}$$
 and $n^{(0)}=(n_i,n_{i+1},\ldots,n_{j-1}=1,n_j=0).$

Define $\gamma(l,j) := 1$ for $i \leq l \leq j-1$, which is a j-branch of γ . Let $n^{(1)} = (n_i-1,n_{i+1}-1,\ldots,n_{j-2}-1,0,0)$. $n^{(1)}$ has sub-blocks, and on each sub-block we construct next branch of γ in the same manner. Continue this work until there are no incomplete blocks left.

Example. (1) Consider a (1-9)-block as shown in Figure 3. Choose right-top cells on each line to make a 9-branch.

- (2) Make a 9-branch and choose next right-top cells as in Figure 4.
- (3) Make a 5-branch and a 8-branch. No incomplete blocks are left(3- and 4-branches completed too).
 - (4) Figure 6 is an RT-projection of Figure 3.

$i \setminus j$	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	p_1	0	0	0	0	0	0	0	0	0	0	0	0	0
2		p_2	1	0	0	0	0	0	0	0	0	0	0	0
3_			p_3	1	1	0	0	0	0	0	0	0	0	0
4				p_4	1	1	0	0	0	0	0	0	0	0
5					p_5	1	0	0	0	0	0	0_	0	0
6						p_6	1	0	0	0	0	0	0	0
7							p_7	0	0	0	0	0	0	0
8								p_8	1	1	1	0	0	0
9									p_9	1	_1	0	0	0
10										p_{10}	1	1	0	0
11											p_{11}	1	0	0
12												p_{12}	0	0
13													p_{13}	1
14														p_{14}

i\j	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	p_1	0	0	0	0	0	0	0	0	0	0	0	0	0
2]	p_2	0	0	0	0	1	0	0	0	0	0	0	0
3			p_3	0	1	0	1	0	0	0	0	0	0	0
4				p_4	1	0	1	0	0	0	0	0	0	0
5					p_5	0	1	0	0	0	0	0	0	0
6						p_6	1	. 0	0	0	_0	0	0	0
7							p_7	0	0	0	0	0	0	0
8								p_8	1	0	1	1	0	0
9									p_9	0	1	1	0	0
10										p_{10}	1	1	0	0
11											p_{11}	1	0	0
12												p_{12}	0	0
13													p_{13}	1
14														p_{14}

Table 1. 0-1-code tables (OCS of $\beta=\phi(\alpha_p)$: top, FCS of α_p : bottom) for the given permutation p=(14,12,10,9,11,8,13,4,5,3,6,7,1,2) in $S_{14}(132)$

The number of cells is finite in β . Hence, this work will be completed after finite number of times. Obviously this γ satisfies conditions (a) and (b) of

FIGURE 4. 9-branch completed

FIGURE 5. 5- and 8-branches completed

Lemma 1. Therefore $\gamma = \rho(\beta)$ is a floated coin-stack and ρ is a bijection (since it is an inverse map of ϕ). This completes the proof of (2).

3. Algorithm for finding p in S(n, 132) from a floated coin-stack

Let γ be a floated coin-stack. We seek p in S(n, 132) such that $\psi(p) = \gamma$. We define a maxbranch by the branch which is not in the shadow of other larger branch, and a maxblock by the block made by the maxbranch using LB-projection.

FIGURE 6. RT-projection of Figure 3.

begin Algorithm

Step 1: Arrange maxblocks in reverse order.

Step 2: For each maxblock, we do the following.

For an (i - j)-maxblock,

Step 2-1: Take out p_j in $(p_i, p_{i+1}, \ldots, p_{j-1}, p_j)$, and adjoin it to the right side of the resulting sequence, producing $(p_i, p_{i+1}, \ldots, p_{j-1})p_j$.

Step 2-2: If there is no j-1-branch, take out p_{j-1} in $(p_i, p_{i+1}, \ldots, p_{j-1})$, and adjoin it to the left side of the resulting sequence, producing $p_{j-1}(p_i, p_{i+1}, \ldots, p_{j-2})$, and return to the Step 1 with the block $(p_i, p_{i+1}, \ldots, p_{j-2})$.

Otherwise, return to the Step 1 with the block $(p_i, p_{i+1}, \dots, p_{j-1})$.

Step 3: Put together the results obtained in Step 2, which corresponds to $123 \cdots n$.

Step 4: Find permutation p.

end Algorithm

Example. Begin with $(p_1, p_2, p_3, p_4, p_5, p_6, p_7, p_8, p_9, p_{10}, p_{11}, p_{12}, p_{13}, p_{14})$ of the FCS given in Figure 2.

Step 1: $(p_{13}, p_{14})(p_8, p_9, p_{10}, p_{11}, p_{12})(p_2, p_3, p_4, p_5, p_6, p_7)(p_1)$

Step 2: (1) $(p_{13}, p_{14}) \longrightarrow (p_{13})p_{14} \longrightarrow p_{13}p_{14}$

- (2) $(p_8, p_9, p_{10}, p_{11}, p_{12}) \longrightarrow (p_8, p_9, p_{10}, p_{11})p_{12} \longrightarrow (p_8, p_9, p_{10})p_{11}p_{12} \longrightarrow p_{10}(p_8, p_9)p_{11}p_{12} \longrightarrow p_{10}p_8p_9p_{11}p_{12} \longrightarrow p_{10}p_8p_9p_{11}p_{12}$
- (3) $(p_2, p_3, p_4, p_5, p_6, p_7) \longrightarrow (p_2, p_3, p_4, p_5, p_6)p_7 \longrightarrow p_6(p_2, p_3, p_4, p_5)p_7 \longrightarrow p_6(p_3, p_4, p_5)p_2p_7 \longrightarrow p_6(p_3, p_4)p_5p_6p_7 \longrightarrow p_6p_4(p_3)p_5p_2p_7 \longrightarrow p_6p_4p_3p_5p_2p_7$
- $(4) p_1$

Step 3: $p_{13}p_{14}p_{10}p_8p_9p_{11}p_{12}p_6p_4p_3p_5p_2p_7p_1 = 123\cdots(13)(14)$ Step 4: p = (14, 12, 10, 9, 11, 8, 13, 4, 5, 3, 6, 7, 1, 2).

4. Further problems

First of all, we can interpret a particular pattern avoidance of the type $S_n(132) \cap S_n(\tau)$ for some $\tau \in S_k$ into a certain type of the ordinary coin-stacks. References [2] and [3] has dealt with and mentioned about this a little. Recently, first author of this article discovered that certain types of ordinary coin-stacks appeared in [3] are related with Chebyshev polynomials of the second kind.

Next, there are several partition problems similar to CS-partitions. One of them is so-called restricted growth functions, which is defined as follows:

(i)
$$d_1 = 1, d_i \ge 1 \text{ for } i = 2, \dots, k,$$

(ii)
$$n = d_1 + d_2 + \cdots + d_k$$
,

$$(ii)$$
 $n = d_1 + d_2 + \dots + d_k,$
 (iii) $d_{i+1} - \max\{d_1, d_2, \dots, d_i\} \le 1 \text{ for } i = 1, 2, \dots, k-1$

These were studied by Milne ([5]), and Stanton and White ([9]) introduced List Algorithm, Rank Algorithm and Unrank Algorithm. Restricted growth functions are related with the number of set-partitions, which is again can be expressed in terms of the Bell number or the Stirling number of the second kind.

Another partition is the (r, p)-histogram, which is defined as follows:

(i)
$$d_1 = r, d_i > 1 \text{ for } i = 2, \dots, k$$

(ii)
$$n = d_1 + d_2 + \cdots + d_k$$
,

(i)
$$d_1 = r, d_i \ge 1 \text{ for } i = 2, \dots, k,$$

(ii) $n = d_1 + d_2 + \dots + d_k,$
(iii) $d_{i+1} - d_i \le p \text{ for } i = 1, 2, \dots, k-1$

These were studied by Merlini and Sprugnoli ([4]). Generating function of (1,p)-histogram has certain relations with Schur polynomials. (See [7] for details.)

Studying the following partition problems seems to be curious and interesting:

(i)
$$d_1 = r, d_i \ge 1 \text{ for } i = 2, \dots, k,$$

(ii) $n = d_1 + d_2 + \dots + d_k,$

(ii)
$$n = d_1 + d_2 + \cdots + d_k$$

(iii)
$$d_{i+1} - \max\{d_1, d_2, \dots, d_i\}$$

or

(i)
$$d_1 = r, d_i \ge 1 \text{ for } i = 2, \dots, k,$$

$$(ii) \quad n = d_1 + d_2 + \dots + d_k,$$

$$(iii)$$
 $d_{i+1} - \max\{d_{i-m}, d_{i-m+1}, \dots, d_i\} \le p \text{ for } i = 1, 2, \dots, k-1.$

Are there any combinatorial meaning for various (r, p, m), like coin-stacking in CS-partitions or set-partitions in restricted growth functions? Even for the simple case where r = p = m = 1 in the last problem, the answer is unknown so far.

References

- [1] M. Bóna, A Walk Through Combinatorics, World Scientific, 2002.
- [2] H.-K. Ju, Classification of the various coin-stacking, Preprint, 2003.
- [3] _____, An approximation to the Catalan function $\frac{1-\sqrt{1-4x}}{2x}$ and its combinatorial example, submitted, 2005.
- [4] D. Merlini and R. Sprugnoli, Fountains and histograms, J. Algorithms 44 (2002), no. 1, 159-176.
- [5] Stephen C. Milne, Restricted growth functions and incidence relations of the lattice of partitions of an n-set, Adv. in Math. 26 (1977), no. 3, 290-305.
- [6] Andrew M. Odlyzko and Herbert S. Wilf, The editor's corner: n-coins in a fountain, Amer. Math. Monthly 95 (1988), no. 9, 840-843.
- [7] Peter Paule and Helmut Prodinger, Fountains, Histograms, and q-identities, Discrete Math. Theor. Comput. Sci. 6 (2003), no. 1, 101-106.
- [8] Richard P. Stanley, Enumerative Combinatorics, vol.2, Cambridge University Press, 1999.
- [9] D. Stanton and D. White, Constructive Combinatorics Springer-Verlag, 1986.
- [10] Herbert S. Wilf, Generatingfunctionology (2nd ed.), Academic Press, 1994.

HYEONG-KWAN JU
DEPARTMENT OF MATHEMATICS
CHONNAM NATIONAL UNIVERSITY
KWANGJU 500-757, KOREA
E-mail address: hkju@chonnam.ac.kr

SOONCHUL PARK
DEPARTMENT OF MATHEMATICS
KYUNGPOOK NATIONAL UNIVERSITY
DAEGU 702-701, KOREA
E-mail address: scp@knu.ac.kr