DOI QR코드

DOI QR Code

EQUIVARIANT SEMIALGEBRAIC LOCAL-TRIVIALITY

  • Park, Dae-Heui (Department of Mathematics College of Natural Sciences Chonnam National University)
  • 발행 : 2007.01.31

초록

We prove the equivariant version of the semialgebraic local-triviality of semialgebraic maps.

키워드

참고문헌

  1. J. Bochnak, M. Coste, and M.-F. Roy, Real Algebraic Geometry, Erg. der Math. und ihrer Grenzg., vol. 36, Springer-Verlag, Berlin Heidelberg, 1998
  2. G. E. Bredon, Introduction to Compact Transformation Groups, Pure and Applied Mathematics, vol. 46, Academic Press, New York, London, 1972
  3. G. W. Brumfiel, Quotient space for semialgebraic equivalence relation, Math. Z. 195 (1987), no. 1, 69-78 https://doi.org/10.1007/BF01161599
  4. M. -J. Choi, D. H. Park, and D. Y. Suh, The existence of semialgebraic slices and its applications, J. Korean. Math. Soc. 41 (2004), no. 4, 629-646 https://doi.org/10.4134/JKMS.2004.41.4.629
  5. R. M. Hardt, Semi-algebraic local-triviality in semi-algebraic mappings, Amer. J. Math. 102 (1980), no. 2, 291{302 https://doi.org/10.2307/2374240
  6. H. Hironaka, Triangulations of algebraic sets, Proc. Sympos. Pure Math. 29 (1975), 165- 185
  7. J. J. Madden and C. M. Stanton, One-dimensional Nash groups, Pacific. J. Math. 154 (1992), no. 2, 331-344 https://doi.org/10.2140/pjm.1992.154.331
  8. D. H. Park and D. Y. Suh, Equivariant semi-algebraic triangulation of real algebraic G-varieties, Kyushu J. Math. 50 (1996), no. 1, 179-205 https://doi.org/10.2206/kyushujm.50.179
  9. D. H. Park and D. Y. Suh, Linear embeddings of semialgebraic G-spaces, Math. Z. 242 (2002), no. 4, 725- 742 https://doi.org/10.1007/s002090100376