DOI QR코드

DOI QR Code

OPTIMAL PORTFOLIO SELECTION WITH TRANSACTION COSTS WHEN AN ILLIQUID ASSET PAYS CASH DIVIDENDS

  • Jang, Bong-Gyu (Derivatives Supervision Team Financial Supervisory Service)
  • 발행 : 2007.01.31

초록

We investigate an optimal portfolio selection problem with transaction costs when an illiquid asset pays cash dividends and there are constraints on the illiquid asset holding. We provide closed form solutions for the problem, and by using these solutions we illustrate interesting features of optimal policies.

키워드

참고문헌

  1. W. E. Boyce and R. C. DiPrima, Elementary Differential Equations and Boundary Value Problems, John Wiley & Sons, New York, 1965
  2. P. Carr, Randomization and the American Put, Review of Financial Studies 11 (1998), 597-626 https://doi.org/10.1093/rfs/11.3.597
  3. G. M. Costantinides, Capital Market Equilibrium with Transaction Costs, Journal of Political Economy 94 (1986), 842-862 https://doi.org/10.1086/261410
  4. D. Cuoco, Optimal Consumption and Equilibrium Prices with Portfolio Constraints and Stochastic Income, J. Econom. Theory 72 (1997), no. 1, 33-73 https://doi.org/10.1006/jeth.1996.2207
  5. M. H. A. Davis and A. R. Norman, Portfolio Selection with Transaction Costs, Math. Oper. Res. 15 (1990), no. 4, 676-713 https://doi.org/10.1287/moor.15.4.676
  6. V. DeMiguel and R. Uppal, Portfolio Investment with the Exact Tax Basis via Nonlinear Programming, Management Science, Forthcoming
  7. B. Dumas, Super Contact and Related Optimality Conditions, J. Econom. Dynam. Control 15 (1991), no. 4, 675-685 https://doi.org/10.1016/0165-1889(91)90038-3
  8. S. J. Grossman and J.-L. Vila, Optimal Dynamic Trading with Leverage Constraints, Journal of Financial and Quantitative Analysis 27 (1992), 151-163 https://doi.org/10.2307/2331365
  9. B.-G. Jang, H. K. Koo, H. Liu and M. Loewenstein, Liquidity Premia and Trans- action Costs, 2006 AFA (American Finance Association) Boston meetings, 2005, http://www.olin.wustl.edu/faculty/liuh/Papers/Regime_October_ 05.pdf
  10. R. Korn, Optimal Portfolios, World Scientific, 1997, 151-171
  11. H. Liu and M. Loewenstein, Optimal Portfolio Selection with Transaction Costs and Finite Horizons, Review of Financial Studies 15 (2002), 805-835 https://doi.org/10.1093/rfs/15.3.805
  12. R. C. Merton, Optimum Consumption and Portfolio Rules in a Continuous-Time Model, J. Econom. Theory 3 (1971), no. 4, 373-413 https://doi.org/10.1016/0022-0531(71)90038-X
  13. M. Schroder and C. Skiadas, Optimal Consumption and Portflio Selection with Stochas- tic Differential Utility, J. Econom. Theory 89 (1999), no. 1, 68-126 https://doi.org/10.1006/jeth.1999.2558
  14. N. M. Temme, Special Functions. An introduction to the classical functions of mathe- matical physics, John Wiley & Sons, New York, 1996

피인용 문헌

  1. A Note on Symmetric Properties of the Twisted q-Bernoulli Polynomials and the Twisted Generalized q-Bernoulli Polynomials vol.2010, 2010, https://doi.org/10.1155/2010/801580
  2. Multi-period mean-variance portfolio selection with fixed and proportional transaction costs vol.9, pp.3, 2013, https://doi.org/10.3934/jimo.2013.9.643
  3. Portfolio Selection with Transaction Costs and Jump-Diffusion Asset Dynamics II: Economic Implications vol.06, pp.04, 2016, https://doi.org/10.1142/S2010139216500191
  4. A Note on Symmetric Properties of the Twisted -Bernoulli Polynomials and the Twisted Generalized -Bernoulli Polynomials vol.2010, pp.1, 2010, https://doi.org/10.1186/1687-1847-2010-801580
  5. Who should sell stocks? pp.09601627, 2019, https://doi.org/10.1111/mafi.12179