References
- V. Batyrev, Stringy Hodge numbers of varieties with Gorenstein canonical singularities, Integrable systems and algebraic geometry (Kobe/Kyoto,1997) (1998), 1-32
- A. Beauville, Varietes Kahleriennes dont la premiere classe de Chern est nulle, J. Differential Geom. 18 (1983), no. 4, 755-782 https://doi.org/10.4310/jdg/1214438181
- V. Danilov and G. Khovanskii, Newton polyhedra and an algorithm for computing Hodge- Deligne numbers, Math. USSR-Izv. 29 (1987), no. 2, 279-298 https://doi.org/10.1070/IM1987v029n02ABEH000970
- J. Denef and F. Loeser, Germs of arcs on singular varieties and motivic integration, Invent. Math. 135 (1999), no. 1, 201-232 https://doi.org/10.1007/s002220050284
- D. Eisenbud, Commutative algebra, With a view toward algebraic geometry, Graduate Texts in Mathematics 150, Springer-Verlag, 1995
- D. Gieseker, On the moduli of vector bundles on an algebraic surface, Ann. of Math.(2) 106 (1977), no. 1, 45-60 https://doi.org/10.2307/1971157
- L. Gottsche, The Betti numbers of the Hilbert scheme of points on a smooth projective surface, Math. Ann. 286 (1990), no. 1-3, 193-207 https://doi.org/10.1007/BF01453572
- P. Griffiths and J. Harris, Principles of algebraic geometry, Wiley-Interscience Publication, John Wiley & Sons, 1978
- A. Grothendieck, Sur quelques points dalgebre homologique, Tohoku Math. J.(2) 9 (1957), 119-221 https://doi.org/10.2748/tmj/1178244839
- A. Grothendieck, Techniques de construction et theoremes d'existence en geometrie algebrique. IV. Les schemas de Hilbert, Seminaire Bourbaki 6 Exp. No. 221 (1995), 249-276
- R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics 52. Sprin-ger- Verlag, 1977
- D. Huybrechts and M. Lehn, The Geometry of moduli spaces of sheaves, A Publication of the Max-Planck-Institut fur Mathematik, Bonn, 1997
- D. Kaledin and M. Lehn, Local structure of hyperkAhler singularities in O'Grady's examples, math.AG/0405575
- Y.-H. Kiem, The stringy E-function of the moduli space of rank 2 bundles over a Rie- mann surface of genus 3, Trans. Amer. Math. Soc. 355 (2003), no. 5, 1843-1856 https://doi.org/10.1090/S0002-9947-02-03125-2
- Y.-H. Kiem, On the existence of a symplectic desingularization of some moduli spaces of sheaves on a K3 surface, Compos. Math. 141 (2005), no. 4, 902-906 https://doi.org/10.1112/S0010437X05001272
- Y.-H. Kiem and J. Li, Desingularizations of the moduli space of rank 2 bundles over a curve, Math. Ann. 330 (2004), no. 3, 491-518 https://doi.org/10.1007/s00208-004-0557-7
- F. Kirwan, Partial desingularisations of quotients of nonsingular varieties and their Betti numbers, Ann. of Math.(2) 122 (1985), no. 1, 41-85 https://doi.org/10.2307/1971369
- I. G. Macdonald, The Poincare polynomial of a symmetric product. Proc. Cambridge Philos. Soc. 58 (1962), 563-568 https://doi.org/10.1017/S0305004100040573
- S. Mukai, Symplectic structure of the moduli space of sheaves on an abelian or K3 surface, Invent. Math. 77 (1984), no. 1, 101-116 https://doi.org/10.1007/BF01389137
- K. G. O'Grady, Desingularized moduli spaces of sheaves on a K3. I, math. AG/9708009
- K. G. O'Grady, Desingularized moduli spaces of sheaves on a K3. II, math.AG/9805099
- K. G. O'Grady, Desingularized moduli spaces of sheaves on a K3, J. Reine Angew. Math. 512 (1999), 49-117
- C. Vafa and E. Witten, A strong coupling test of S-duality. Nuclear Phys. B 431 (1994), no. 1-2, 3-77 https://doi.org/10.1016/0550-3213(94)90097-3
- C. Voisin, Hodge theory and complex algebraic geometry. I, Cambridge studies in Advanced Mathematics 76, Cambridge University Press, 2002
- C. Voisin, Hodge theory and complex algebraic geometry. II, Cambridge studies in Advanced Mathematics 77, Cambridge University Press, 2002
- K. Yoshioka, Twisted stability and Fourier-Mukai transform. I, Compositio Math. 138 (2003), no. 3, 261-288 https://doi.org/10.1023/A:1027304215606
Cited by
- A Study on the Effects of the Mobile Telecommunication Quality on Customer Satisfaction and Customer Loyalty. -Focus on Moderation effect of Switching Barrier- vol.44, pp.4, 2016, https://doi.org/10.7469/JKSQM.2016.44.4.921
- NEW SYMPLECTIC V-MANIFOLDS OF DIMENSION FOUR VIA THE RELATIVE COMPACTIFIED PRYMIAN vol.18, pp.10, 2007, https://doi.org/10.1142/S0129167X07004503