DOI QR코드

DOI QR Code

HYBRID MEAN VALUE OF GENERALIZED BERNOULLI NUMBERS, GENERAL KLOOSTERMAN SUMS AND GAUSS SUMS

  • Published : 2007.01.31

Abstract

The main purpose of this paper is to use the properties of primitive characters, Gauss sums and Ramanujan's sum to study the hybrid mean value of generalized Bernoulli numbers, general Kloosterman sums and Gauss sums, and give two asymptotic formulae.

Keywords

References

  1. T. M. Apostol, Introduction to analytic number theory, Undergraduate Texts in Math- ematics. Springer-Verlag, New York-Heidelberg, 1976
  2. S. Chowla, On Kloosterman's sum, Norske Vid. Selsk. Forh. (Trondheim) 40 (1967), 70-72
  3. T. Estermann, On Kloosterman's sum, Mathematica 8 (1961), 83-86
  4. H. W. Leopoldt, Eine Verallgemeinerung der Bernoullischen Zahlen, Abh. Math. Sem. Univ. Hamburg 22 (1958), 131-140 https://doi.org/10.1007/BF02941946
  5. H. Liu and W. Zhang, On the hybrid mean value of Gauss sums and generalized Bernoulli numbers, Proc. Japan Acad. Ser. A Math. Sci. 80 (2004), no. 6, 113-115 https://doi.org/10.3792/pjaa.80.113
  6. A. V. Malysev, A generalization of Kloosterman sums and their estimates, Vestnik Leningrad. Univ. 15 (1960), no. 13, 59-75
  7. C.-D. Pan and C.-B. Pan, Goldbach's Conjecture, Chuncui Shuxue yu Yingyong Shuxue Zhuanzhu [Series of Monographs in Pure and Applied Mathematics], 7. Kexue Chuban- she (Science Press), Beijing, 1981
  8. Y. Yi and W. Zhang, On the 2k-th power mean of inversion of L-functions with the weight of Gauss sums, Acta Math. Sin. (Engl. Ser.) 20 (2004), no. 1, 175-180 https://doi.org/10.1007/s10114-003-0285-z
  9. W. Zhang, The first power mean of the inversion of L-functions and general Klooster- man sums, Monatsh. Math. 136 (2002), no. 3, 259-267 https://doi.org/10.1007/s006050200045
  10. W. Zhang, On a Cochrane sum and its hybrid mean value formula, J. Math. Anal. Appl. 267 (2002), no. 1, 89-96 https://doi.org/10.1006/jmaa.2001.7752
  11. W. Zhang, On the general Kloosterman sums and its fourth power mean, J. Number Theory 104 (2004), no. 1, 156-161 https://doi.org/10.1016/S0022-314X(03)00154-9
  12. W. Zhang, On the fourth power mean of the general Kloosterman sums, Indian J. Pure Appl. Math. 35 (2004), no. 2, 237-242
  13. W. Zhang and H. Liu, A note on the Cochrane sum and its hybrid mean value formula, J. Math. Anal. Appl. 288 (2003), no. 2, 646-659 https://doi.org/10.1016/j.jmaa.2003.09.056
  14. W. Zhang, Y. Yi, and X. He, On the 2k-th power mean of Dirichlet L-functions with the weight of general Kloosterman sums, J. Number Theory 84 (2000), no. 2, 199-213 https://doi.org/10.1006/jnth.2000.2515

Cited by

  1. ON MIXED TWO-TERM EXPONENTIAL SUMS vol.47, pp.6, 2010, https://doi.org/10.4134/JKMS.2010.47.6.1107