Synthesis and Thermotropic Liquid Crystalline Behaviors of 6-[4-(4'-(nitrophenylazo) phenoxycarbonyl)] pentanoated Polysaccharides

6-[4-(4'-(니트로페닐아조)펜옥시카보닐)]펜타노화 다당류들의 합성과 열방성 액정 거동

  • Jeong, Seung-Yong (Department of Polymer Science and Engineering, Dankook University) ;
  • Ma, Yung-Dae (Department of Polymer Science and Engineering, Dankook University)
  • 정승용 (단국대학교 고분자공학과) ;
  • 마영대 (단국대학교 고분자공학과)
  • Published : 2007.01.31

Abstract

Fully or nearly fully 6- [4- (4'- (nitrophenylazo)phenoxycarbonyl)]pentanoated polysaccharide derivatives were synthesized by reacting cellulose, amylose, chitosan, chitin, alginic acid, pullulan or amylopectin with 6- [4- (4'- (nitrophenylazo)phenoxy) ] pentanoyl chloride (NA6C) and their thermotropic liquid crystalline behaviors were investigated. Like in the case of NA6C, all the polysaccharide derivatives formed monotropic nematic phases, suggesting that the mesophase structure of the polysaccharide derivatives is dertermined by the mesogenic side groups and not by the polysaccharide backbone. This is the first report of polysaccharide derivatives, except cellulose derivative, that form thermotropic nematic phases. The thermal stability and degree of order of the nematic phases observed for poly saccharide derivatives were significantly different from those reported for the polymers in which the azobenzene groups are attached to flexible or rigid backbones through flexible spacers. The results were discussed in terms of the difference in the arrangement of the main and side chains and the flexibility of the main chain.

셀룰로오스 아밀로오스 키토산, 키틴, 알긴산, 풀루란 또는 아밀로펙틴을 6- [4- (4'- (니트로페닐아조)펜옥시)]펜타노일 클로라이드(NA6C)와 반응시켜 전치환 또는 거의 전치환 6- [4- (4'- (니트로페닐아조)펜옥시카보닐)] 펜타노화 다당류 유도체들을 합성함과 동시에 이들의 열방성 액정의 거동들을 검토하였다. NA6C의 경우와 같이, 모든 다당류 유도체들은 단방성 네마틱 상들을 형성하였다. 이러한 사실은 다당류 유도체들의 액정 구조는 다당류 골격에 의해 결정되는 것이 아니고 mesogenic 곁사슬 그룹들에 의해 결정됨을 시사한다. 이것이 셀룰로오스 유도체들을 제외한 다당류 유도체들이 열방성 네마틱 상을 형성한다고 하는 최초의 보고이다. 다당류 유도체들에 있어서 관찰되는 네마틱 상들의 열적 안정성과 질서도는 아조벤젠 그룹들을 유연한 스페이서를 통하여 유연한 혹은 강직한 골격들에 도입시켜 얻은 고분자들에 대해 보고된 결과들과 현저히 다르다. 이들의 결과를 주사슬과 곁사슬의 배열 그리고 주사슬의 유연성의 차이와 관련하에서 검토하였다.

Keywords

References

  1. R. S. Werbowyj and D. G. Gray, Mol. Cryst. Liq. Cryst., 34, 97 (1976)
  2. T. Fukuda, Y. Tsujii, and T. Miyamoto, Macromol. Symp., 99, 257 (1995)
  3. Y.-D. Ma, Polymer Science and Technolgy, 8, 555 (1997)
  4. P. Zugenmair, Handbook of Liquid Crystals, D. Demus, J. Goodby, G. W. Gray, H.-W. Spiess, and V. Vill, Editors, Wiley-VCH, Weinheim-New York, Vol 3, Chap. lX, p 453 (1998)
  5. Y.-D. Ma and K.-H. Kim, Polymer (Korea), 24, 418 (2000)
  6. S.-Y. Jeong, J.-H. Jeong, Y-D. Ma, and Y Tsujii, Polymer(Korea), 25, 279 (2001)
  7. Q. Zhou, L. Zhang, H. Okamura, M. Minoda, and T. Miyamoto, J. Polym. Sci.; Part A: Polym. Chem., 39, 376 (2001) https://doi.org/10.1002/1099-0518(20010101)39:1<1::AID-POLA10>3.0.CO;2-B
  8. Z. Yue and J. M. G. Cowie, Macromolecules, 35, 6572 (2002) https://doi.org/10.1021/ma011278u
  9. B. Reck and H. Ringsdorf, Makromol. Chem., Rapid Commun., 6, 291 (1985)
  10. V. Percec and C. Pugh, Side Chain Liquid Crystal Polymers, C. B. McArdle, Editor, Chapman and Hall, New York, Chap. 3, p 30 (1989)
  11. R. Zentel, Handbook of Liquid Crystals, D. Demus, J. Goodby, G. W. Gray, H.-W. Spiess, and V. Vill, Editors, Wiley-VCH, Weinheim-New York, Vol 3, Chap. I, p 52 (1998)
  12. B.-Q. Chen, A. Kameyama, and T. Nishikubo, Macromolecules, 32, 6485 (1999)
  13. V. Percec, A. D. Asandei, D. H. Hill, and D. Crawford, Macromolecules, 32, 2597 (1999)
  14. J. Stumpe, Th. Fischer, and H. Menzel, Macromolecules, 29, 2831 (1996)
  15. X. Jin, F. W. Harris, and S. Z. D. Cheng, Macromolecules, 30, 6498 (1997)
  16. X. L. Piao, J.-S. Kim, Y.-K. Yun, and J.-I. Jin, and S.-K. Hong, Macromolecules, 30, 2294 (1997)
  17. J.-W. Lee, J.-I. Jin, B.-W. Jo, J.-S. Kim, W.-C. Zin, and Y.-S. Kang, Acta Polym., 50, 399 (1999)
  18. S.-W. Cha, J.-I. Jin, D.-C. Kim, and W.-C. Zin, Macromolecules, 34, 5432 (2001)
  19. S. Kumaresan and P. Kannan, J. Polym. Sci.; Part A: Polym. Chem.,41, 3188 (2003) https://doi.org/10.1002/pola.10910
  20. M. Sate, M. Mizoi, and Y. Uemoto, Macromol. Chem. Phys., 202, 3634 (2001) https://doi.org/10.1002/1521-3935(20010101)202:1<1::AID-MACP1>3.0.CO;2-L
  21. M. Sato and M. Mizoi, Polym. J., 36, 607 (2004) https://doi.org/10.1295/polymj.36.607
  22. W. Huang and C. D. Han, Polymer, 47, 4400 (2006) https://doi.org/10.1016/j.polymer.2006.04.034
  23. J.-H. Kim, S.-Y. Jeong, and Y.-D. Ma, Polymer(Korea), 28, 92 (2004)
  24. J.-H. Kim, S.-Y. Jeong, and Y.-D. Ma, Polrmer(Korea), 28, 41 (2004)
  25. S.-Y. Jeong and Y.-D. Ma, Polymer(Korea), 30, 338 (2006)
  26. L. Brehmer, Polymer Sensors and Actuators, Y. Osada and D. E. DeRossi, Editors, Springer-Verlag, Berlin, Chap. 2, p 15 (2002)
  27. C. Pugh and A. L. Kiste, Handbook of Liquid Crystals, D. Demus, J. Goodby, G. W. Gray, H.-W. Spiess, and V. ViII, Editors, Wiley-VCH, Weinheim-New York, Vol 3, Chap. Ill, p 123 (1998)
  28. B. Sapich, A. B. E. Vix, J. P. Rabe, and J. Stumpe, Macromolecules, 38, 10480 (2005) https://doi.org/10.1021/ma0507793
  29. E. Chiellini and M. Laus, Handbook of Liquid Crystals, D. Demus, J. Goodby, G. W. Gray, H.-W. Spiess, and V. Vill, Editors, Wiley-VCH, Weinheim-New York, Vol 3, Chap. I, p 26 (1998)
  30. S. Kumaresan and P. Kanann, J. Appl. Polym. Sci., 91, 455 (2004) https://doi.org/10.1002/app.2384
  31. S. Alazaroaie, V. Toader, I. Carlescu, K. Kazmierski, D. Scutaru, N. Hurduc, and C. I. Simionescu, Europ. Polym, J., 39, 1333 (2003) https://doi.org/10.1016/S0014-3057(03)00002-8
  32. K. Y. Sandhya and C. K. S. Pillai, J. Appl. Polym. Sci., 91, 1976 (2004) https://doi.org/10.1002/app.13335
  33. D. Acierno, E. Amendola, V. Bugatti, S. Concilio, L. Giorgini, P. Iannelli, and S. P. Pitto, Macromolecules, 37, 6418 (2004) https://doi.org/10.1021/ma049319k
  34. T. Seki, Polym. J., 36, 435 (2004) https://doi.org/10.1295/polymj.36.435
  35. C. Bowry, Processes in Photoreactive Polymers, V. V. Krongauz and A. D. Trifunac, Editors, Chapman & Hall, New York, Chap. 7, p 278 (1995)
  36. P. J. Martin, Introduction to Molecular Electronics, M. C. Petty, M. R. Bryce, and D. Bloor, Editors, Edward Arnold, London, Chap. 6, p 112 (1995)
  37. E. Yashima, J. Noguchi, and Y. Okamoto, Macromolecules, 28, 8368 (1995)
  38. Y. Okamoto, H. Sakamoto, K. Hatada, and M. Irie, Chem. Lett., 983 (1986)
  39. M. Muller and R. Zentel, Macromol. Chem. Phys., 201, 2055 (2002)
  40. C. Wu, Q. Gu, Y. Huang, and S. Chen., Liq. Cryst., 30, 733 (2003) https://doi.org/10.1080/0267829031000115005
  41. M. Buche!, B. Weichart, C. Minx, H. Menzel, and D. Johannsmann, Phys. Rev. E, 55 455 (1997)
  42. S. Yang, M. M. Jacob, L. Li, A. L. Cholli, J. Kumar, and S. K. Tripathy, Macromolecules, 34, 9193 (2001) https://doi.org/10.1021/ma002404h
  43. P. Zheng, X. Hu, X. Zhao, L. Li, K. C. Tam, and L. H. Gan, Macromol. Rapid Commun., 25, 678 (2004) https://doi.org/10.1002/marc.200300123
  44. X. Hu, P. J. Zheng, X. Y. Zhao, L. Li, K. C. Tam, and L. H. Gan, Polymer, 45, 6219 (2004) https://doi.org/10.1016/j.polymer.2004.05.072
  45. L. Zhou, Q. XU, and D. Wang, J. Appl. Polym. Sci., 100, 2832 (2006) https://doi.org/10.1002/app.21947
  46. S. Kurihara, K. Iwamoto, and T. Nonaka, Polymer, 39, 3565 (1998)
  47. S.-B. Lee, J.-S. Yang, and D.-K. Park, Polymer(Korea), 25, 496 (2001)
  48. J.-H. Liu and F.-T. Wu, J. Appl. Polym, Sci., 97, 721 (2005) https://doi.org/10.1002/app.21021
  49. J.-W. Lee, J.-I. Jin, M. F. Achard, and F. Hardouin, Liq. Cryst., 28, 663 (2001)
  50. Y.-D. Ma and S.-Y. Jeong, Industrial Technology Research Paper(Dankook university) , 5, 21 (2004)
  51. S.-S. Kim, S.-H. Kim, and Y.-H. Lee, J. Polym. Sci.; Part B: Polym. Phys., 34, 2367 (1996)
  52. Y-D. Ma, S.Y. Jeong, J.-H. Jeong, and K-H. Kim, Dankook University Faculty Research Papers, 33, 425 (1998)
  53. M. Sugiura, M. Minoda, J. Watanabe, T. Fukuda, and T. Miyamoto, Bull. Chem.Soc. Jpn., 65, 1939 (1992)
  54. T. Itoh, H. Suzuki, and T. Miyamoto, Bull. Inst. Chem. Res., Kyoto Univ., 70, 132 (1992)
  55. K Aoi, Takasu, and M. Okada, Macromol. Chem. Phys., 195, 3835 (1994)
  56. N. Kubota and Y Eguchi, Polyrn. J., 29, 123 (1997) https://doi.org/10.1295/polymj.29.997
  57. J.-H. Liu and P.-C. Yang, J. Appl. Polym. Sci., 91, 3693 (2004) https://doi.org/10.1002/app.13614
  58. A. Isogai, A. Ishizu, and J. Nakano, J. Appl. Polym. Sci., 30, 345 (1985) https://doi.org/10.1002/app.1985.070300309
  59. J. L. Lee, E. M. Pearce, and T. K Kwei, Macromolecules, 30, 8233 (1997)
  60. C. Noel, Handbook of Liquid Crystals, D. Demus, J. Goodby, G. W. Gray, H.-W. Spiess, and V. ViII, Editors, Wiley-VCH, Weinhein-New York, Vol 3, Chap. II, p 93 (1998)
  61. X. Kong and B. Z. Tang, Chem. Mater., 10, 3352 (1998)
  62. J. W. Y. Lam and B. Z. Tang, J. Polym. Sci; Part A; Polym. Chem., 41, 2607 (2003) https://doi.org/10.1002/pola.10802
  63. P. Maganini, Thermotropic Liquid Crystal Polymer Blends, F. P. La Mania, Editor, Technonic Publishing Company, Inc., Western Hemisphere, Chap. I, p 1 (1993)
  64. M. Yalpani, Polysaccharides, Elsevier, New York, Chap. 4, p 83 (1988)
  65. C. - I. Oh, M. Sc. Dissertation, DanKook University, 1996
  66. H. Jeong, M. Sc. Dissertation, DanKook University, 1997
  67. Y.-D. Ma and S.-Y. Jeong, Industrial Technology Research Paper (Dankook University), 5, 21 (2004)
  68. YD. Ma and S.-Y. Jeong, Industrial Technology Research Paper(Dankook University), 6, 1 (2005)
  69. S.-Y Jeong and Y.-D. Ma, Polymer(Korea), 30, 35 (2006) https://doi.org/10.1016/0032-3861(89)90379-0
  70. S. K Rath and R. P. Singh, J. Appl. Polym, Sci., 70, 1795 (1998)
  71. C. Xiao, S. Gao, and L. Zhang, J. Appl. Polym. Sci., 77, 617 (2000)
  72. V. D. Athawale and S. C. Rathi, Eur. Polym. J., 33, 1067 (1997) https://doi.org/10.1016/S0014-3057(96)00303-5
  73. C. Xiao, Y Lu, H. Liu, and L. Zhang, J. Appl. Polym, Sci., 80, 26 (2001) https://doi.org/10.1002/1097-4628(20010404)80:1<1::AID-APP1067>3.0.CO;2-Z
  74. D. Vega, M. A. villar, M. D. Failla, and E. M. Valles, Polym. Bull., 37, 229 (1996)
  75. T. L. Vigo, Encyclopeids of Polymer Science and Engineering, H. F. Mark, N. M. Bikales, C. G. Overberger, G. Menges, and J. I. Kroschwitz, Editors, Jhon Wiley & Sons, Inc., Vol. 3, p 110 (1985)
  76. X. Qu, A. Wirsen, and A. -C. Albertsson, Polymer, 41, 4841 (2000)
  77. Y. Sui, Y-G. Liu, J. Gao, Z.-K Zhu, D.-Y. Huang, and Z.-G. Wang, J. Polym. Sci; Part A: Polym. Chem., 37, 4330 (1999)
  78. S. Ivanov. I. Yakovlev, S. Kostromin, and V. Shibaev, Macromol. Chem., Rapid Commun., 12, 709 (1991)
  79. O. Tsutsumi, T. Kitsunai, A. Kanazawa, T. Shiono, and T. Ikeda, Macromolecules, 31, 355 (1998)
  80. Y. WU, Q. Zhang, A. Kanazawa, T. Shiono, T. Ikeda, and Y. Nagase, Macromolecules, 32, 3951 (1999)
  81. M. Han and K. Ichimura, Macromolecules, 34, 82 (2001) https://doi.org/10.1021/ma002404h
  82. M. Han and K. Ichimura, Macromolecules, 34, 90 (2001) https://doi.org/10.1021/ma002404h
  83. L. Andreozzi, P. Camorani, M. Faetti, and D. Palazzuoli, Mol. Cryst. Liq. Cryst., 375, 129 (2002)
  84. T. Sasaki, R. Kai, A. Sato, Y. Ishikawa, and T. Yoshimi, Mol. Cryst. Liq. Cryst., 373, 53 (2002)
  85. S. Yoneyama, T. Yamamoto, O. Tsutsumi, A. Kanazawa, T. Shiono, and T. Ikeda, Macromolecules, 35, 8751 (2002) https://doi.org/10.1021/ma011278u
  86. T. Ikeda, S. Yoneyarna, and M. Hasegawa, Mol. Cryst. Liq. Cryst., 401, 35 (2003) https://doi.org/10.1080/744814916
  87. O. Tsutsumi, T. Shiono, T. Ikeda, and G. Galli, J. Phys. Chem. B, 101, 1332 (1997)
  88. Y. Wu, Y. Demachi, O. Tsutsumi, A. Kanazawa, T. Shiono, and T. Ikeda, Macromolecules, 31, 349 (1998)
  89. Y. Wu, Y. Demachi, O. Tsutsumi, A. Kanazawa, T. Shiono, and T. Ikeda, Macromolecules, 31, 4457 (1998)
  90. Y. Wu, J.-I. Mamiya, A. Kanazawa, T. Shiono, T. Ikeda, and Q. Zhang, Macromolecules, 32, 8829 (1999)
  91. L. Andruzzi, A. Altomare, F. Ciardelli, R. Solaro, S. Hvilsted, and P. S. Rarnanujam, Macromolecules, 32, 448 (1999)
  92. Y. Wu, J.-I. Marniya, O. Tsutsumi, A. Kanazawa, T. Shiono, and T. Ikeda, Liq. Cryst., 27, 749 (2000)
  93. J. G. Meier, R. Ruhmann, and J. Stumpe, Macromolecules, 33, 843 (2000)
  94. L. Andreozzi, M. Faetti, M. Giordano, D. Palazzuoli, M. Laus, and G. Galli, Macromol. Chem. Phys., 203, 1636 (2002)
  95. X. He, H. Zhang, D. Yan, and X. Wang, J. Polym. Sci; Part A: Polym. Chem., 41, 2854 (2003) https://doi.org/10.1002/pola.10870
  96. L. Andreozzi, M. Faetti, D. Polazzuoli, M. Giordano, and G. Galli, Mol. Cryst. Liq. Cryst., 398, 87 (2003) https://doi.org/10.1080/15421400390221222
  97. X. Tong, L. Cui, and Y. Zhao, Macromolecules, 37, 3101 (2004) https://doi.org/10.1021/ma049744d
  98. Q. Bo, A. Yavrian, T. Galstian, and Y. Zhao, Macromolecules, 38, 3079 (2005) https://doi.org/10.1021/ma0473869
  99. R. Gimenez, M. Millaruelo, M. Pinol, J. L. Serrano, A. Vinuals, R. Rosenbauer, T. Fischer, and J. Stumpe, Polymer, 46, 9230 (2005) https://doi.org/10.1016/j.polymer.2005.07.040
  100. J.-H. Liu and C. - D. Hsieh, J. Appl. Polym. Sci., 99, 2443 (2006) https://doi.org/10.1002/app.22776
  101. R. Rosenhauer, Th. Fischer, J. Stumpe, R. Gimenez, M. Pinol, J. L. Serrano, V. Vinuales, and D. Broer, Macromolecules, 38, 2213 (2005) https://doi.org/10.1021/ma048259f
  102. Z. Zheng, J. Xu, Y. Sun, J. Zhou, B. Chen, Q. Zhang, and K. Wang, J. Polym. Sci; Part A: Polym. Chem., 44, 3210 (2006) https://doi.org/10.1002/pola.21398
  103. G. Hempel, A. Dimitrova, J. Lindau, D. Reichert, and H. Schneider, Macromol. Chem. Phys., 204, 674 (2003) https://doi.org/10.1002/macp.200390036
  104. X. He and D. Yan, Macromol. Rapid Commum., 25, 949 (2004) https://doi.org/10.1002/marc.200300304
  105. B. Hsu, C. A. McWherter, D. A. Brant, and W. Burchard, Macromolecules, 15, 1350 (1982)