A Wavelet based Adaptive Algorithm using New Fast Running FIR Filter Structure

새로운 Fast running FIR filter구조를 이용한 웨이블렛 기반 적응 알고리즘에 관한 연구

  • 이재균 (대구대학교 정보통신공학과) ;
  • 박재훈 (대구대학교 정보통신공학과) ;
  • 이채욱 (대구대학교 정보통신공학과)
  • Published : 2007.01.31

Abstract

LMS(Least Mean Square) algorithm using steepest descent way in adaptive signal processing requires simple equation and is used widely because of the less complexity. But eigenvalues change by width of input signals in time domain, so the rate of convergence becomes low. In this paper, we propose a new fast running FIR filter structure that improves the convergence speed of adaptive signal processing and the same performance as the existing fast wavelet transform algorithm with less computational complexity. The proposed filter structure is applied to wavelet based adaptive algorithm. Simulation results show a better performance than the existing one.

적응신호처리 분야에서 LMS(Least Mean Squar) 알고리즘은 수식이 간단하고, 적은 계산량으로 인해 널리 사용되고 있지만, 시간영역의 적응알고리즘은 입력신호의 고유치 분포폭이 넓게 분포할 때는 수렴속도가 느려지는 단점이 있다. 본 논문에서는 적응 신호처리의 수렴속도를 향상 시키고, 기존의 wavelet 변환을 고속으로 처리하는 고속화 알고리즘과 비교하여 적은 계산량으로 동일한 성능을 보이는 새로운 형태의 fast running FIR 필터 구조를 제안한다. 제안한 구조를 웨이블렛 기반 적응 알고리즘에 적용하였다. 실제로 합성 음성을 사용하여 컴퓨터 시뮬레이션을 통해 기존의 알고리즘과 비교 및 분석한 결과 제안한 알고리즘의 성능이 우수한 것을 알 수 있었다.

Keywords

References

  1. Gray, A.A. Hoy, S.D. Ghuman, P., 'Adaptive LMS processing architectures employing frequency domain sub-convolution,' Circuits and Systems 2004, Proceedings of the 2004 International Symposium on. Vol. 3, 23-26, May 2004
  2. Jiangtao Xi and J. F. Chicharo, 'Computing running discrete cosine/sine transform based on the adaptive LMS algorithm,' Circuits and Systems for Video Technology, IEEE Transactions on , Vol. 8, Issue. 1, pp. 31-35, Feb, 1998 https://doi.org/10.1109/76.660827
  3. Junghsi Lee & Sheng-chieh Chang, 'On the convergence properties of multidelay frequency domain adaptive filter,' Proceedings of the 1999 IEEE International Conference on Acoustics Speech and Signal Processing - Volume 4 , 1865-1868, March,1999
  4. Kostas Berberidis & Sergios Theodoridis, 'A new fast block adaptive algorithm,' IEEE Transactions on Signal Processing, vol.47, no.1, January, 1999
  5. Wasfy B.Mikhael & Andreas S.Spanias, 'A fast frequency-domain adaptive algorithm,' Proceedings of the IEEE, vol.76, no.1, January, 1988
  6. G. A. Clark, S. K. Mitra and S. R. Parker,' Block implementation of adaptive digital filters', IEEE Transactions on Circuits and Systems, Vol.36, No. 2, pp.173-189, Feb,1989 https://doi.org/10.1109/31.20196
  7. W.K.Jenkins and J.R.Kreidle, 'Adaptive digital filters using the Walsh-Hadamard transform,' ,on Circuits and Systems, San Jose, CA, pp.875-878, May, 1986
  8. Hosur and A. H. Tewfik, Wavelet Transform Domain LMS Algorithm, Proc. ICASSP-93, pp. 508-510, April, 1993
  9. S. Attallah, The wavelet transform-domain LMS algorithm: a more practical approach Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions on, Vol. 47, Issue. 3, pp. 209-213. March,2000 https://doi.org/10.1109/82.826747
  10. S. Attallah, The wavelet transform-domain LMS algorithm: a more practical approach Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions on, Vol. 47, Issue. 3, pp. 209-213, March, 2000 https://doi.org/10.1109/82.826747
  11. Z. Chen, N. Erdol and F. Bao, Adaptive filters based on the best matched wavelet tree Applications of Signal Processing to Audio and Acoustics, 1995., IEEE ASSP Workshop on, pp. 267-270, 1995
  12. S. Hosur and A. H. Tewfik, Wavelet transform domain adaptive FIR filtering Signal Processing, IEEE Transactions on, Vol. 45, Issue. 3, pp. 617-630, March, 1997 https://doi.org/10.1109/78.558477