DOI QR코드

DOI QR Code

The influence of composite resin restoration on the stress distribution of notch shaped noncarious cervical lesion A three dimensional finite element analysis study

복합레진 수복물이 쐐기형 비우식성 치경부 병소의 응력 분포에 미치는 영향에 관한 3차원 유한요소법적 연구

  • Lee, Chae-Kyung (Department of Conservative Dentistry, College of Dentistry, Pusan National University) ;
  • Park, Jeong-Kil (Department of Conservative Dentistry, College of Dentistry, Pusan National University) ;
  • Kim, Hyeon-Cheol (Department of Conservative Dentistry, College of Dentistry, Pusan National University) ;
  • Woo, Sung-Gwan (Department of Mechanical Design Engineering, College of Engineering, Pusan National University) ;
  • Kim, Kwang-Hoon (Department of Mechanical Design Engineering, College of Engineering, Pusan National University) ;
  • Son, Kwon (Department of Mechanical Design Engineering, College of Engineering, Pusan National University) ;
  • Hur, Bock (Department of Conservative Dentistry, College of Dentistry, Pusan National University)
  • 이채경 (부산대학교 치과대학 치과보존학교실) ;
  • 박정길 (부산대학교 치과대학 치과보존학교실) ;
  • 김현철 (부산대학교 치과대학 치과보존학교실) ;
  • 우성관 (부산대학교 공과대학 기계설계공학과) ;
  • 김광훈 (부산대학교 공과대학 기계설계공학과) ;
  • 손권 (부산대학교 공과대학 기계설계공학과) ;
  • 허복 (부산대학교 치과대학 치과보존학교실)
  • Published : 2007.01.31

Abstract

The purpose of this study was to investigate the effects of composite resin restorations on the stress distribution of notch shaped noncarious cervical lesion using three-dimensional (3D) finite element analysis (FEA). Extracted maxillary second premolar was scanned serially with Micro-CT (SkyScan1072 ; SkyScan, Aartselaar, Belgium). The 3D images were processed by 3D-DOCTOR (Able Software Co., Lexington, MA, USA). ANSYS (Swanson Analysis Systems, Inc., Houston, USA) was used to mesh and analyze 3D FE model. Notch shaped cavity was filled with hybrid or flowable resin and each restoration was simulated with adhesive layer thickness ($40{\mu}m$) A static load of 500 N was applied on a point load condition at buccal cusp (loading A) and palatal cusp (loading B). The principal stresses in the lesion apex (internal line angle of cavity) and middle vertical wall were analyzed using ANSYS. The results were as follows 1. Under loading A, compressive stress is created in the unrestored and restored cavity. Under loading B, tensile stress is created. And the peak stress concentration is seen at near mesial corner of the cavity under each load condition. 2. Compared to the unrestored cavity, the principal stresses at the cemeto-enamel junction (CEJ) and internal line angle of the cavity were more reduced in the restored cavity on both load con ditions. 3. In teeth restored with hybrid composite, the principal stresses at the CEJ and internal line angle of the cavity were more reduced than flowable resin.

이 연구의 목적은 쐐기형 비우식성 5등급와동을 복합레진으로 수복하기 전, 후에 과도한 교합력에 의한 응력분포 변화를 비교 연구하기 위함이었다. 발치된 상악 제 2소구치를 이용하여 쐐기형 비우식성 치경부병소를 가진 3차원 유한요소모형을 제작한 후 탄성계수가 서로 다른 혼합형 복합레진과 흐름성 복합레진으로 각각 충전하고 이때의 상아질 접착제의 두께는 $40{\mu}m$로 하였다. 협측교두와 설측교두에 500 N의 하중을 각각 가한 후 ANSYS 프로그램을 이용하여 주응력분석법으로 병소의 심부와 와동 수직병의 응력분포를 비교하여 다음과 같은 결과를 얻?B다. 1. 협측교두에 하중이 가해지면 병소에 압축응력이 나타나고, 설측교두에 가해지면 인장응력이 나타난다. 두 가지 하중에서 모두 병소의 근심 끝 부위와 인접한 백악법랑경계 그리고 병소의 심부에 응력이 집중되었다. 2. 응력의 집중을 보였던 병소의 금심부근과 심부는 수복 후 응력이 많이 감소하였으며 대신 다른 부위에서는 응력이 약간 증가하였다. 3. 병소의 근심부위와 심부는 흐름형 복합레진으로 수복하였을 때 보다 혼합형 복합레진으로 수복하였을 때 응력이 더 많이 감소하였다.

Keywords

References

  1. Levitch LC, Bader JD, Shugars DA, Heymann HO, Non-carious cervical lesion. J Dent 22: 195-207, 1994 https://doi.org/10.1016/0300-5712(94)90107-4
  2. Grippo JO, Simring M, Schreiner S. Attrition, abrasion, corrosion and abfration revisited - A new perspective on tooth surface lesions. J Am Dent Assoc 135:1109-1118, 2004 https://doi.org/10.14219/jada.archive.2004.0369
  3. Grippo JO. Abfractions: A new classification of hard tissue lesions of tooth. J Esthet Dent 3(1):14-19, 1991 https://doi.org/10.1111/j.1708-8240.1991.tb00799.x
  4. Rees JS. A review of the Biomechanics of abfraction. Eur J Prosthdont Restor Dent 7(4): 139-144, 1993
  5. Aw TC, Lepe X, Johnson GH, Mancl L. Characteristics of non-carious cervical lesion. J Am Dent Assoc 133:725-733, 2002 https://doi.org/10.14219/jada.archive.2002.0268
  6. Bader JD, Levich LC, Shugars DA, Heymann HO, Mcclure F. How dentists classified & treated non-carious cervical lesions. J Am Dent Assoc 124:46-54, 1993 https://doi.org/10.14219/jada.archive.1993.0112
  7. Grippo JO. Non-carious cervical lesions: The decision to ignore or restore. J Esthet Dent 4:55-64, 1992 https://doi.org/10.1111/j.1708-8240.1992.tb00721.x
  8. Blunck U. Improving cervical restorations: A Review of Materials and Techniques. J Adhes Dent 3:33-44, 2001
  9. Kemp-Scholte CM, Davidson CL. Complete marginal seal of class V resin composite restorations effected by increased flexibility. J Dent Res 69: 1240-1243, 1990 https://doi.org/10.1177/00220345900690060301
  10. Kemp-Scholte CM, Davidson CL. Marginal integrity related to bond strength and strain capacity of composite resin restorative system. J Prosthet Dent 64:658-664, 1990 https://doi.org/10.1016/0022-3913(90)90291-J
  11. Van Meerbeek B, Peumans M, Gladys S, Braem M, Lambrechts P, Vanherle G. Three-year clinical effectiveness of four total-etch dentinal adhesive systems in cervical lesions. Quintessence Int 27: 775-784, 1996
  12. Ausiello P, Apicella A, Davidson CL. Effect of adhesive layer properties on stress distribution in composite restorations-a 3D finite element analysis. Dent Mater 18:295-303, 2002 https://doi.org/10.1016/S0109-5641(01)00042-2
  13. Powell LV, Johnson GH, Gordon GE. Factors associated with clinical success of cervical abrasion/erosion restorations. Oper Dent 20:7-13, 1995
  14. Litonjua LA, Andreana S, Patra AK. Cohen RE. An assessment of stress analyses in the theory of abfraction. Biomed Mater Eng 14:311-321. 2004
  15. Rees JS. The role of cuspal flexure in the development of abfraction lesions: a finite element study. Eur J Oral Sci 106: 1028-1032. 1998 https://doi.org/10.1046/j.0909-8836.1998.eos106608.x
  16. Tanaka M. Naito T. Yokota M, Kohno M. Finite element analysis of the possible mechanism of cervical lesion formation by occlusal force. J Oral Rehabil 30: 60-67, 2003 https://doi.org/10.1046/j.1365-2842.2003.00959.x
  17. Rees JS. Hammadeh M. Undermining of enamel as a mechanism of abfraction lesion formation: a finite element study. Eur J Oral Sci 112:347-352, 2004 https://doi.org/10.1111/j.1600-0722.2004.00143.x
  18. Son YH. Cho BH. Um CM. Finite element stress analysis of class V composite resin restoration subjected to cavity forms and placement methods. J Kor Acad Cons Dent 25(1):91-108, 2000
  19. Um CM, Kwon HC. Son HH. Cho BH. Rim YI. Finite element analysis of stress distribution according to cavity design of class V composite resin filling. J Kor Acad Cons Dent 25(1) :67-74, 1999
  20. Lindehe J, Karring T. Textbook of Clinical Periodontology. 2nd edition. Munksgaard. Copenhagen. p19-69, 1989
  21. Schroeder HE, Page RC. Periodontal Diseases. 2nd edition. Lea & Fabiger, Philadelphia. p3-52, 1990
  22. Rubin C, Krishnamurthy N. Capilouto E. Yi H. Stress analysis of the human tooth using a three-dimensional finite element model. J Dent Res 62:82-86, 1983 https://doi.org/10.1177/00220345830620021701
  23. Katona TR. Winkler MM. Stress analysis of a bulkfilled class V light-cured composite restoration. J Dent Res 73(8):1470-1477, 1994 https://doi.org/10.1177/00220345940730081201
  24. Geramy A. Sharafoddin F. Abfraction: 3D analysis by means of the finite element method. Quintessence Int 34(7): 526-533. 2003
  25. Le SY, Chiang HC. Huang HM. Shih YH. Chen HC. Dong DR, Lin CT. Thermo-debonding mechanisms in dentin bonding systems using finite element analysis. Biomaterials 22(2): 113-123, 2001 https://doi.org/10.1016/S0142-9612(00)00086-7
  26. Kleverlaan CJ. Feilzer AJ. Polymerization shrinkage and contraction stress of dental resin composite. Dent Mater article in press. 2005
  27. Osborne-Smith KL. Burke FJT. Mc Farlane T, Wilson NHF. Effect of restored and unrestored non-carious cervical lesions on the fracture resistance of previously restored maxillary premolar teeth. J Dent 26:427-433, 1998 https://doi.org/10.1016/S0300-5712(97)00029-8
  28. Kuroe T, Itoh H, Caputo AA, Konuma M. Biomechanics of cervical tooth structure lesions and their restoration. Quintessence lnt 31 (4): 267-273, 2000
  29. Leinfelder KF. Restoration of abfracted lesions. Compend Contin Educ Dent 15: 1396-1400, 1994
  30. Yaman SD, Sahin M, Aydin C. Finite element analysis of strength characteristics of various resin based restorative material in Class V cavities. J Oral Rehabil 30:630-641. 2003 https://doi.org/10.1046/j.1365-2842.2003.01028.x
  31. Browning WD, Bracket WW. Gilpatrick RO. Retention of microfilled and hybrid resin-based composite in noncarious class 5 lesions: A double-blind, randomized clinical trial. Oper Dent 24:26-30. 1999
  32. Grippo JO, Simring M. Dental 'erosion' revisited. J Am Dent Assoc 126:619-630. 1995 https://doi.org/10.14219/jada.archive.1995.0241
  33. Lee WC. Eakle WS. Stress-induced cervical lesions: Review of advances in the past 10 years. J Prosthet Dent 75:487-494, 1996 https://doi.org/10.1016/S0022-3913(96)90451-5

Cited by

  1. The influence of occlusal loads on stress distribution of cervical composite resin restorations: A three-dimensional finite element study vol.33, pp.3, 2008, https://doi.org/10.5395/JKACD.2008.33.3.246