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On D-admissibility Conditions of Singular Systems

Lixin Gao and Wenhai Chen

Abstract: In this paper, we first establish D;-admissibility and Dg-admissibility conditions for
singular systems. The admissibility conditions expressed as Lyapunov type inequalities extend
the existed results of normal systems to singular systems. As special cases the admissibility
conditions of the continuous-time and the discrete-time singular systems can be obtained directly.
The results established in this paper can be applied to solve the problems of eigenvalue
assignment, regional pole-placement and robust control etc.
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1. INTRODUCTION

In recent years, there has been a growing interest in
the system theoretic problem of singular systems
because of the extensive applications of descriptor
systems to many engineering systems. The singular
state-space systems are also referred to as generalized
systems, descriptor systems or implicit systems. The
essence of its simultaneous description of dynamic
and algebraic relationships between state variables
makes such models especially suitable for robotic
systems, singularly perturbed systems, and highly
interconnected large-scale systems, thus it present a
much wider class of systems than normal systems [1].
A great number of fundamental notions and results
based on state-space systems have been successfully
extended to singular systems, such as controllability
and observability, pole assignment, stability and
stabilization [1-4] and so on. The descriptor system
approach is a useful tool to solve the stability and A~
control problems of linear time-delay systems [5].

It is well known that Lyapunov equation plays an
important role in the stable analysis of systems.
Lyapunov approach has become a powerful tool in
solving different problems for standard systems. There
are many attempts to generate the Lyapunov approach
to generalized systems, and some useful and
interesting results are also established [3,4,6].
Stability is a minimum requirement for control
systems. In most practical situations, however, a good
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controller should also deliver sufficiently fast and
well-damped time responses. A customary way to
guarantee satisfactory transients is to place the closed-
loop poles in a suitable region of the complex plane.
Therefore, the pole clustering analysis and pole
placement design play an important role in practical
engineering applications. For examples, fast decay,
good damping and reasonable controller dynamics can
be imposed by confining the poles in the intersection
of a shifted half-plane, a sector and a disk etc [7-13].

[7-9] introduced some special pole regions
expressed by linear matrix inequalities (LMI) and
established the Lyapunov type results of pole
clustering analysis and design for normal systems case.
The LMI region covers a large variety of useful
clustering regions, including half-planes, disks,
sectors, vertical/horizontal strips, and any intersection
thereof. This class of regions can be applied
successfully in solving some robust control problems
based on LMI structure of regions. To reduce the
conservatism, [7,14,15] wuse parameter-dependent
Lyapunov matrices to solve the robust D-stability
problems by using Lyapunov inequalities for some
particular structure of uncertainties. From a practical
standpoint, LMI approaches are appealing for
applications because there are effective and powerful
algorithms such as interior-point method for the
solution of LMI problems and there are also a number
of software packages such as MATLAB to be
available for solving LMI problems [16].

The purpose of this paper is to establish Lyapunov
type admissibility conditions of descriptor systems for
LMI D regions. The generalized Lyapunov equation
proposed by this paper can be used to solve the pole
clustering analysis and pole placement design
problems. Based on the results of this paper, we can
establish robust LMI D-admissibility conditions of
descriptor systems for polytopic uncertainty structure
or other uncertainty structure by using the similar
ideas given in [7,14-16].
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The remaining part of the paper is organized as
follows. In Section 2, we give some basic concepts
and preliminary results used in this paper. In Section 3,
we establish new Lyapunov type admissibility
conditions of descriptor systems for LMI D regions,
which are main results of this paper.

The notation of this paper is standard. z represents
the conjugate of zeC. A’ is denoted as transpose
of a matrix A4. For symmetric matrices 4, B, A>
(2)B means A—B is positive (semi-) definite. &
is the derivation operator for continuous-time systems
(Ox(1)=x(t)), and the delay operator for discrete-time
case (Ox(t)=x(t+1)). ® is the Kronecker product
of two matrices, and it is well-known that (4 ® B)

(C® D) =(AC)® (BD).

2. PROBLEM FORMULATION AND
PRELIMINARIES

Consider a time-invariant finite-dimensional

singular system described by

Ex(t)=Ax(t) or Ex(k+1)= Ax(k), 1)

where xeR” is the state vector, E,4e R™", and
rank(E)=r <n, thus may be singular. For brevity,
(E,A) to
represent a singular systems in (1). When rank(F) =

we will use EdSx=Ax or the pair

0, the system (1) degenerates to algebraic equations,
so we always assume that r=rank(E)#0 in this
paper.

Some important features concerning the study of
singular systems are recalled [1]. The singular system
(1) or the pair (£, A4) is said to be regular if and only
if det(sE — A) is not identically zeros, which implies
the solution of system (1) exists and is unique for any
specified initial condition. The singular system (1) is
said to be impulse-free, if deg(det(sE— A))=r.
Finally, a pair (E,A4) is said to be stable if all finite

generalized eigenvalues of the pair lie in the stable
region, i.e., the open left-half plane for continuous
systems or the inside unit disk for discrete systems.
For short, the system (1) is said to be admissible if
and only if it is regular, impulse-free and stable.

From a practical standpoint, a singular system
should be stable and impulse-free. The system will
deliver sufficiently fast and well-damped time
responses if we assign all finite generalized
eigenvalues of the pair (£,4) in some special

regions. Thus, we give the definition of D-admissible
as follows.

Definition 1: The singular system (1) is said to be
D-admissible if it is regular, impulse-free and all its

finite eigenvalues of pair (£, 4) are inside region D.

The matrix 4 is said to be D-stable if all its
eigenvalues lie in the region D. In [8], a class of
convex LMI-base regions was characterized by

D, ={zeC:R|+Ryz+RHZ <0}, )

where Ry e R jsa symmetric matrix and Ry, €

R™ . Some special regions such as conic sectors,
vertical half planes, and vertical strips are D; regions.

Let ReR*™29 bea symmetric matrix partitioned

R, R
R:{ 1 12}'
Ry Ry

The regions given by

as

Dp={zeC:R+Ryz+RLZ+RypzZ <0} (3)

were introduced in [7] as an extension of the so-called
LMI regions. It includes most notably the left-plane
(continuous-time stability) and the unit disk (discrete-
time stability) for the respective particular choices:

01 -1 0
RZL 0}’ R{o 1}' @

Lemma 1 [7]: AeC™" is Dy -stable if and only
if there exists a symmetric positive definite matrix
P e R™" such that

Ry ® P+Ry5 ®(PA)+ R ® (AT P)+ Ry, ® (AT P4) <0.
)
For convenience, we also set
F(4,P)=R;; ® P+R;, ®(PA)
+ R ® (4T P)+ Ry, ® (4T P4)
and

F5(A,P) =Ry ® P+ R, ®(PA)+ R, ® (4T P).

The following lemma which relates system matrices
with its algebraic characterization can be found in [1].
Lemma 2: For any regular pair (£, A), there exist

nonsingular matrices M and N such that

I, 0 4 0
MEN = , MAN = , (6)
0 J 0 I,

where J is a nilpotent matrix.
Lemma 2 shows that A(E,A4)=A(l,,4) and
(E,A) is impulse-free if and only if J =0, where
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A(E,4) is the set of all
eigenvalues of the matrix pair (E,A). Therefore, the
system (1) is admissible if and only if J=0 and
r#0. If all finite eigenvalues of pair (E,4) are
local in the region D, we say that (E,A) is D-stable.
The singular system (1) is D-admissible if and only if
A, is D-stable, J=0 and r=0.

finite generalized

3. MAIN RESULTS

In this section, we establish D; -admissibility and
Dy -admissibility conditions for singular systems,
which are the main results of this paper.

Theorem 1: For a given D; region: D; ={zeC
‘R + Rz + RlTZZ <0}, the following two states are
equivalent:

(@ D ={zeC:Rjyz+ R1T27 <0} is non-empty, and
the singular system (1) is D; -admissible.
(b) There exists a matrix X such that

ETx=xTE>0, (7
Ry ®ETX)+R, (X )+ R, ® (47 X)<0.(8)

Proof: (b=>a): Let M|,N, € R™" be nonsingular’

matrices such that

I 0
M, EN, =[0 0} ©)

then partition M| T)(Nl, M, AN, conforming to the
partition form of (9), that is

T X X, 4 4
M| XN, = . x.I M AN, = 4 4l (10)
3 Xy G Ay

From E’X=XTE>0, it is obtained that X, =0.

Pre- and post-multiplying (8) by I, ®N1T and its
transpose, we obtain that

R®X‘ Ol R ®* *
11 0 0 12 e xTa,

Pre- and post-multiplying the above inequality by
1;®[0 1,,] andits transpose, we have

Ry, ® (XT 4)+ R, ® (41 X,) <0, (11)

which implies that 4, is nonsingular. Otherwise, if A4

is singular, there exists Oz=xeR"’ such that
Ayx =0. Then, we can obtain that

(1 ® )| Ry @ (X] Ay +R ® (4] X3) |1y © %) =0,

which conflicts with (11). Hence, we have that the
singular system (1) is regular and impulse-free.

Since the singular system (1) is regular and
impulse-free, according to the result of Lemma 2,

there exist nonsingular matrices M, N e R”" such that

I, 0 4 0
MEN = , MAN = . (12)
0 0 0 I,

Partition M~T XN conforming to (12), that is

Xl X2j|

M_TAW:{
X; X,

From (7) and (12), it can be obtained that X; >0
and X, =0. Pre- and post-multiplying (8) by 7; ®

NT andits transpose, we have

0 X4 x
+R12 ®
0 * X4T

T
+R1T2®A1X1 * l<o.
* X4

X
(13)

Pre- and post-multiplying (13) by 1, ®[/, 0] and
its transpose, we can get

R ® X, + R, ® (X 4) + R, ® (4] X7) <0,

which also implies X; is nonsingular. Using Lemma
1, all the finite eigenvalues of (E,4) are inside Dj.
It follows immediately that the singular system (1) is
D, -admissible.

By using similar process, we can obtain that

R, ® (XD +RL ®(X,)<0.

It 4

eigenvalue vector x#0 such that X;x=Ax and

x"x=1. Then

is a eigenvalue of X,;, so there exists

(1 ® ") Ry ® (X]) + R ®(X,) |y ®)
= RyA +RHA <0,

whichmeans A" €D, so D, isnon-empty.

(a=>b): Suppose that the singular system (1) is Dy -
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admissible, then the pair of system matrices (£, A4)
has the partition form of (12) and A(4)c D;. By
using Lemma 1, it follows that there exists a positive-
definite symmetric matrix Q; € R” such that

Ry ®Q +R;, ®(04)+RL ® (4l 0)) <0.

Since Dj; is non-empty, there exists A<D, then
we also have A e Dj. Then, it can be obtained that
a=Ai+leD, so al,,eR"™"" is D, -stable.
By using Lemma 1, it follows that there exists a
positive-definite symmetric matrix @, e R"""
such that

Ry ®(aQ,)+ R ®(@0,) <0.

Choose matrices X,T as

x=m|9 O |y
0 al, ’

T:{ 1,®[1, 0] }[g@NT]. “

;o0 I,,]
Then, we can get that

TRy ®(E"X)+ Ry ®(X )+ Ry ® (4" 01"

Fy(4,0)) 0
= - <0.
0 Ry ®(aQy) + Ry ®(a,)

So the above matrix X satisfies (7, 8). O

Remark 1: If a matrix X satisfies Rj; ® (ETX )
+R, ®(XTA)+ R, ® (AT X) <0, it is obvious that
the matrix X is nonsingular. Let V=X 1 Pre-
and post-multiplying (7) by Y T and its transpose,
and pre- and post-multiplying (8) by I, ®Y T andits
transpose, we get the equivalent condition of (b) in

Theorem 1 as follows: There exists a matrix Y such
that

YTET =EY >0,
T T T T T (15)
Rll ®(Y E )+R12 ®(AY)+R12 ®(Y A )<0.
Remark 2: From Theorem 1, we can easily obtain
that the singular system (1) is regular, impulse-free

and each of its finite eigenvalues A <—-o/2 if and
only if there exists a nonsingular matrix X such that

Elx=xTE>0,

(16)
ATX +xT4+aET X <0.

This result can also be found in [17], so Theorem 1
extends the results of [17].
Remark 3: Consider now the conic sector S(0,8)

defined as xtané < —| y|. 5(0,8) is an LMI region

characterized by

17

sinf(z +7z)

sinf(z+72)
cosé(-z+7)

cosf(z— 2)} <0

From Theorem 1, a singular system (1) is regular,
impulse-free and each of its finite poles in S(0,8) if

and only if there exists a nonsingular matrix X such
that

ETx=x"E>0,

sin@(XTA+ATX) cos@(XT4- 4T X) 0 (18)

<0.

cosO(-XT A4+ ATX) sind(XxT 4+ AT X)

In the most practical applications, the pole regions
lie in the open left-half plane for continuous-time case
because of stability of the systems. Some D, regions
such as vertical strips don’t satisfy the condition (a) of
Theorem 1. Now, we establish Lyapunov type
condition for D; regions located in the open lefi-half
plane.

Theorem 2: For a given Dy region: D; ={ze(C:
R +Rpz+ RQE <0} lies in open left-half plane, the
singular system (1) is D;-admissible if and only if
there exist matrices X, P such that

ETx=XxTE>0,
ETP=PTE>0,
ATp+ Pl 4<0, (19)
Ry ®ETX)+R,® (X 4)
+RL @A X)+1, ®(ETP)<0.

Proof: Sufficiency: According to Remark 2, the
singular system (1) is admissible from

ETP=P'E>0,
ATp+PT4<0.

Since the singular system (1) is regular and impulse-
free, thus there exist nonsingular matrices

M,N € R™" such that the pair of system matrices
(E,A) has the partition form of (12). Partition

MTPN and M TXN conforming to (12) as
follows

B P
M‘TPN{l 2}, M‘T)avz{

X X,
B B ‘
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From E'P=PTE>0, it is obtained that P, =0
and B >0. Pre- and post-multiplying the last
equation of (19) by [, ®[/ O]N T and its transpose,
we can obtain that

Ry ® X, + Ry ® (X, 4) + R ® (4] X))+ R <0,
by noticing that A >0, we have
Ry ® X, + Ry, ®(X;4)+ R & (4] x1) <0,

which implies all the finite eigenvalues of (E,4) are

inside D;.

Necessity: Suppose that the singular system (1) is
D;-admissible, then the pair of system matrices
(E,4) has the partition form of (12) and

AM(4) c D;. By using Lemma 1, it follows that there
exist positive-definite symmetric matrices 0,0,

such that Q4 + AlT 0, <0 and F,(4,0,) <0. Choose
matrices X,P as

Y s 0 }Nl X=MT|:Q2 O}N—l
0 5 b

-1 0 0

n-—r

and matrix T by (14). Since F,(4,0,)<0, the

following inequality satisfies for a small enough
constant f

T(R,1 ®(ETX)+ Ry, ®(XT 4)+ R, ®(ATX))TT

| B0+ 0
i 0 o™

The matrices P, X can be verified to satisfy (19) by
straightforward calculation for small enough 8. O

The following theorem concerns the Dg-admissible
condition for singular systems.

Theorem 3: For a given Dy region: Dp =
{zeC:R| +Rjpz + Rszf + Ry,2z <0}, suppose that
Ry, >0. Then, the singular system (1) is Dy -

admissible if and only if there exists a symmetric
matrix X such that

ETXE >0, (20)
Ry, ® (ET XE) + R, ® (ET X4) 21

+ R ® (AT XE) + Ry, ® (4 XA4) < 0.
Proof: Sufficiency: There exist nonsingular

matrices M;,N; € R™" such that (9) and (10) are
satisfied. From (18), it is obtained that X; >0. Pre-

and post-multiplying (19) by [;® NlT and its
transpose, we obtain that

roel X iR 0" "
+
11 0 0 12 x 0
Rlel" “lir, o Tl<o
+ 19 *0+22 *H<’
where

H=A X4y + A Xy Ay + AL X3 4y + AL X 4 Ay,

Pre- and post-multiplying the above inequality by
1,®[0 1, .| andits transpose, we obtain that

Ryy ® H <0. (22)

If A, is singular, there exists 0=xeR" such

that A,x=0. Then, we can obtain that

(I; ®x")[Ry @ H|(I; ®x)
=Ry, ® (xT AL X, 4yx) = (x 4] X, 4,%)Ry5 >0,

which conflicts with (20). Hence, A4 is nonsingular

from which we have that the singular system (1) is
regular and impulse-free.

Since the singular system (1) is regular and
impulse-free, the pair of system matrices (£,4) has

the partition form of (12). Partition M Txm™!
conforming to (12), that is

X X

MTxm™ =T T2 (23)
xT x,

From (12, 20) and (23), it can be obtained that

X, 20. Pre- and post-multiplying (19) by I, ® N”

and its transpose, we obtain that

*

T
*}+R22 ®[A1 X4 *} <0.
* *

Pre- and post-multiplying above inequality by
I, ®[I, 0] and its transpose, we obtain that

F(4,%)<0,

which also implies X is nonsingular and all the
finite eigenvalues of (F, 4) areinside Dy by using
Lemma 1 and 2. It follows immediately that the
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singular system (1) is Dj -admissible.

Necessity: Suppose that the singular system (1) is
Dy -admissible, the pair of system matrices (E,4)
has the partition form of (12) and A(4;) c Di. By
using Lemma 1, it follows that there exists a positive-
definite symmetric matrix Q; € R such that

F(4,0)<0.

Now, define a matrix X,T by

X:MTF1 0 }M,
0 -I

n—r

T:{ la®U OJ]MId oN"|

1,®[0 1.,

24)

Then, we can get that
T[Id ®NT }[a (X)] i

[Aao) 0 T
0 R22 &® (_In~r) '

So the above symmetric matrix X satisfies (20, 21). O

Remark 4: From Theorem 3, we can easily obtain
that the singular systems (1) is regular, impulse-free
and each of its finite eigenvalues |A|<d if and only

if there exists a symmetric matrix X such that

ETXE >0,

(25)
A" x4 - dET XE <0.
In case d=1, the condition of (25) represents
admissibility condition of the discrete-time singular
systems.

Example 1: To demonstrate the feasibility of the
approach presented in this paper, we give a simple
example by using LMI solver of MATLAB. We
consider the singular systems Ex= Ax with the
following system matrices:

1 00 -1 1
E=|/0 1 0§, 4=|-2 3 0
0 0 0 1 2 3

taking & =% and using results of Remark 3, the
condition (18) has a solution matrix

0.5482  0.0751 0
X =| 00751 0.2076 0 ,
—0.0553 -0.0049 -0.1773

which implies that the singular systems is regular,
impulse-free and all its finite eigenvalues of pair

(E,A4) are inside region S (O,%) In this case, the
above results can also be obtained by direct
calculation. If the system matrix A4 is replaced as

-1 2 0
A=(-2 -1 0
1 2 3

the condition (18) has no solution by taking 8= %

If we take @ > arctan (%), the condition (18) has

solution matrix by using LMI solver of MATLAB. By
direct calculation, the pair (£,A4) has eigenvalues

—1+2; which are not inside S(0,Z%).

4. CONCLUSION

In this paper, we first establish an LMI’s Dj-
admissibility condition for descriptor systems, which
extends the results of [8] to descriptor systems. We
also establish an Dp -admissible condition which

extends the results of [7] to generalized systems. The
Lyapunov equation established in this paper can be
applied to solve the pole-clustering problems and
robust control problems. By using the similar ideas
given in [7,14,15] for normal systems, it is not
difficult to establish robust LMI D-admissibility
conditions of descriptor systems for polytopic
uncertainty based on the results obtained in this paper.
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