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Revision on the Frequency Domain Conditions
for Strict Positive Realness

Mojtaba Hakimi Moghaddam and Hamid Khaloozadeh*

Abstract: In this paper, the necessary and sufficient conditions for strict positive realness of the
rational transfer functions directly from basic definitions in the frequency domain are studied. A
new frequency domain approach is used to check if a rational transfer function is a strictly
positive real or not. This approach is based on the Taylor expansion and the Maximum Modulus
Principle which are the fundamental tools in the complex functions analysis. Four related
common statements in the strict positive realness literature which is appeared in the control
theory are discussed. The drawback of these common statements is analyzed through some
counter examples. Moreover a new necessary condition for strict positive realness is obtained
from high frequency behavior of the Nyquist diagram of the transfer function. Finally a more
simplified and completed conditions for strict positive realness of single-input single-output
linear time-invariant systems are presented based on the complex functions analysis approach.

Keywords: Frequency domain analysis, maximum modulus principle, strict positive realness,

taylor expansion of rational transfer function.

1. INTRODUCTION

The concept of positive realness is motivated from
circuit theory. The sufficiency condition for positive
realness and many of its properties are developed by
Otto Brune in 1930 [1,2]. In 1963, Popov introduced
the notion of hyperstability in control theory and
showed that a linear time-invariant system is
hyperstable system if and only if the transfer function
of system is positive real, also he developed the
concept of strict positive realness and showed that a
linear time-invariant system is asymptotically
hyperstable system if and only if the transfer function
of system is strictly positive real [3]. Thus the concept
“strict positive realness” of transfer functions has been
extensively used in various field of control such as
adaptive control [8-10], optimal control [11,12],
nonlinear control [13-15], robust control [16-21] and
even intelligent control [22]. Although in [31] the
state space definition for strict positive realness which
is called Kalman-Yakubovich-Popov (KYP) Lemma
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has been preferred through a lot of other definitions,
the most basic definition of this concept is motivated
by Popov’s hyperstability theory and it is stated in
frequency domain. It seems that almost all activities
have been focused on the state space approaches, e.g.
Kalman-Yakubovich-Popov (KYP) Lemma [23-29]
and after about four decades, there is not a unique
statement in the control literature which states the
necessary and sufficient conditions for strict positive
realness of single-input single-output system in the
frequency domain. An important drawback of the state
space approaches is that they involve only the proper
transfer functions (this limitation can be seen in the
context of Theorem 2.1 of [6] and also in the Lemma
(10-1) of [7]).

In this paper, the necessary and sufficient frequency
domain conditions for strict positive realness are
obtained without any limitation on the relative degree
of transfer function by using the frequency domain
definition. The Taylor expansion approach is used to
investigate four common statements in this area. A
new necessary condition which imposed from high
frequency part of the Nyquist diagram is deduced.
Finally a more simplified and completed conditions
for strict positive realness are presented based on the
complex analysis approach.

2. BASIC DEFINITIONS
Suppose G(s) denotes a rational transfer function

with real coefficients, then we have the following
definitions.
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Definition 1 [7]: G(s) is positive real (PR) if and
only if:
1) G(s) is analytic in Re[s] > 0,
2) Any pure imaginary pole of G(s) is a simple pole
and the associated residue is positive,
3) Forallreal @ >0 for which j® isnota pole of
G(s), the inequality Re[G(jw)]= 0. is satisfied.
Definition 2 [3]: G(s) is strictly positive real (SPR)
if G(s—¢) is positive real for sufficiently small
£>0.
Combination of these definitions implies the
following definition: ‘
Definition 3: G(s) is SPR if and only if for
sufficiently small £>0:
1) G(s—¢)is analytic in Re[s] > 0,
2) Any pure imaginary pole of G(s—¢&) is a simple
pole and the associated residue is positive,
3) For all real @ >0 for which j@ is not a pole
of G(s—¢), the inequality Re[G(jw—¢)]=0
is satisfied.

3. TAYLOR EXPANSION APPROACH

Suppose G(s) is a real rational function of the
complex variable s =0 + jw, asshownin (1).
my blsm -1

N +
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M k>0.(1)
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Lemma 1: G(s) is SPR if and only if:
1) G(s) is analytic in Re[s] > 0,
2) n—-m=2-land k>0 for n—m=-1,
3) Re,,o+[G(jo—¢)]=20,Vo=0.

Proof: Suppose definition (3) is as conditions for
strict positive realness, then the phrase “G(s—¢)is
analytic in Re[s] > 0” is equivalent to the phrase “G(s)
is analytic in Re[s[>-¢”. It is obvious that a real
rational transfer function of complex variable
§=0+ jw is analytic in the whole complex plane

except in its poles. Now suppose G(s) be analytic in
region Re[s] > 0 and the nearest pole to the imaginary
axis has a real part equal to —p*, we can always select
¢ such that it satisfies the inequality ¢ < p*. Thus the
phrase “ G(s — ¢) is analytic in Re[s]>0” is equivalent
to the phrase “G(s) is analytic in Re[s] > 0”. It is clear
that the second condition in definition (3) restricts the
relative degree of G(s) to n—m =1, because only a
simple pole at infinity is admissible and if the relative
degree of G(s) is equal to minus one, then the
positivity of k is necessary to guarantee the positivity
of the associated residue of this simple pole at infinity.
Also the third condition can be restated as appear in
Lemma 1.

We know that the Taylor series of a rational transfer
function G(s) is valid on the whole complex plane,
except on the poles of G(s). The first condition in the
Lemma 1, guarantees the validity of Taylor expansion
of G(s) on the imaginary axis, thus Lemma 1 can be
restated as following Lemma:

Lemma 2: G(s) is SPR if and only if:

1) G(s) is analytic in Re[s] > 0,
2) n—-m=2—-landif n—m=-1 then k>0,

3) Foreach @w=0 inequality:

lim,_,o+ Re[G(jw) - sG'(ja)) + %82G" (jo)x...]120,

k
is satisfied, where G(k) (jo)= d—kG(s)
ds §=jw.
Suppose Ge(s) = (1/2) [G(s) +G (-s)] and G,(s) =
(1/2) [G(s)-G (-s)] are the even and odd parts of G(s)
respectively. Since the derivative of an even function
is odd and the derivative of an odd function is even, it
is easy to verify that:

Re[G(jw - )]

= Re[G(jo) - £G (jo) +%szc" Go)F-] @)
-G, (j) - £G,, (ja) +-52G, (jo) 75 -

Thus the Lemma 2 can be restated as follows:
Lemma 3: G(s) is SPR if and only if:

1) G(s) is analytic in Re[s] >0,

2) n—-m>2-landif n—-m=-1 then k>0,

3) Foreach @ =0 inequality:
. . 1 . 1 " i _
hmHow{Ge(JaJ) -¢G, (jo) +552Ge( jo)Fo ...]zo.

In the next section these results are used to study
the previous well-known common statements in the
SPR transfer function literatures.

4. PREVIOUS WELL-KNOWN COMMON
STATEMENTS

In spite of the basic definition of SPR functions
which has been motivated by Popov hyperstability
theory and restated in the frequency domain [3],
almost all activities have been focused on the state
space approaches based on KYP Lemma. Our purpose
here is to verify the strict positive realness of real
transfer functions via Lemma 3 which is derived
directly from frequency domain definitions. First, four
well-known common statements that yield the
necessary and sufficient conditions for SPR functions
are discussed and then their drawbacks are mentioned
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through some examples.

The basic question that the four common statements
in SPR area try to answer is:

Which extra conditions must be held on a PR
transfer function to guarantee it to be an SPR transfer
function? The main object of this paper is to clarify
the answer of this question.

Statement 1: (Astrom) [4]

Theorem: G(s) is SPR if and only if:

1) G(s) is analytic in Re[s] > 0,
2) G(s) has no any pole or zero on the imaginary axis,
3) Re[G(jw)]20, Vo =20.

Counter Example 1: According to this statement

2
the transfer function Gj(s) =s2+7s+1 SPR,
s“+s5+4
because:
2 2
Re[G,(jo)] = Gpo(jo) = —2—2 >0, var>0,
(0 -4y +w
But using Lemma 3, we have:
Re[G)(jo - &)= Gio(s) = 2Gip () £+ _
s=jo
(2 +2)? 952 —21s2 + 48 N
T2 2_ 2 2|~
(s“+4)" —s ((S2+4)2 _Sz)
s= jw
(0? -2)? —90* +210% + 48

T @ -8’ (@247 +0?)

Now it is easy to verify that
Re[G, (j~/2 - £)] = —1.5¢ + hoi(&).

Thus G(s) is not SPR by the basic definitions
because

lim,_, +Re[G; (jv2 —&)] = -1.5¢ <.

Statement 2: (Slotine) [5]
Theorem: G(s) is SPR, if and only if:
1) G(s) is analytic in Re[s] > 0,
2) Re[G(jw)]1>0, Vo =0.
Counter Example 2: According to this statement

the transfer function G,(s)= 2s *l SPR,
s +s+1

because:

Re[ G, (jw)] = Gy, (jw) = 5>0,Vo20.

(@ -1 +w

But using Lemma 3, we have:

1 o® + o -30°

Re[G,(jw —&)]= -
? (@2 —1)? + ? (@ -1 +o? )2

+...,

Thus G(s) is not SPR according to the basic
definitions because:

. &
Rea)_>oo[G2(]a)_5)]z—'—7<0, Ve>0.
w

Comment 1: It should be noted that, if » is the
relative degree of G(s), then the relative degree of
G¥(s) is (r + k), hence the first two terms of the
Taylor series are sufficient to study the behavior of
G(s) in sufficiently large frequencies as used in
previous counter example.

Statement 3: (Ioannou and Tao) [6]

Theorem: G(s) is SPR, if and only if:

1) G(s) is analytic in Re[s] > 0,
2) Re|G(jw)]>0, Vo =0,
3) One of the following conditions is satisfied:

i) lim , _, _ Re[G(j@)]>0
a) If n—m=-1 Then:y G(s)

ii) hms Sw >0,
b) If n—m=1, then lim , , @ Re[G(jw)]>0.

Comment 2: Since Statement 3 has been proved in
the state space, it doesn’t involve improper transfer
functions. It should be noted that the condition (3-a-i)
is not appeared in [8,9], so the necessity of this
condition is mentioned by following example.

2

sS+s5+1

Example 1: Suppose G;(s) = . It is easy

to show that all conditions in theorem 3 are satisfied
for Gi(s) except the condition (3-a-i) because:

. . . 1
hma)_)OoRe[G3(ja))]=llmw_)ool————7=O.

But according to Lemma 3 we have:

4 2
o +3w been
(@? +1)?

Re[G5(jow - €)]= 21 —a[
o +1

So Regy —» ol G3(j@ — €)] * —£ <0, and thus Gs(s)

is not SPR.
Statement 4: (Khalil) [7]
Theorem: Suppose G(s) denotes a proper rational
transfer function, then G(s) is SPR, if and only if:
1) G(s) is analytic in Re[s] >0,
2) Re[G(jw)]>0, Vo =0,
3) One of the following conditions is satisfied:
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a) If G(c0)=0 (ie, n—m=0) then k >0,

b) If n-m=1 then,limw _)Ooa)2 Re[G(jw)] > 0.

This theorem considers only proper functions due
to the restriction arises from state space realization
and KYP Lemma. In general, the third condition
which is appeared in the two last theorems refers to
the fact that there are extra necessary conditions
which are imposed by high frequency behavior of
some specific functions (i.e., Re[G(jw)}], G(s)/s and

a)zRe[G(]’a))]. In the next section these necessary
conditions is substituted by a new simpler necessary
condition which is resulted from the Nyquist diagram
of G(s) over the range of high frequencies.

5. MAIN RESULTS

Suppose G(s) is a real rational transfer function as
shown in (1):

m m-1
G(s)zkb(s):ks +bs 1+"'+b’”,k>0.
a(s) " +as" +..+a,

It should be noted that the inequalities |n - m| <1,
k>0 and 5,20, i=1,...,m;aj20, j=1..,n can
easily be resulted from circuit theory for any positive
real function. In the case k>0, if we assume
n—m=0, then there is no need for any extra
condition which is imposed by high frequencies for
G(s) to be strict positive real, because G(s) >k as s
— 0.

For the case |n —m| =1, k>0, the new condition

(n—m)(ay —by) >0 must be satisfied for G(s) to be

strict positive real. This fact is proved in the following
proposed Lemma. :
Lemma 4: Suppose G(s) is a SPR real rational

transfer function as in (1) and |n - m| =1, then
(n_m)(al _b1)>0.

Proof: For |n - m| =1, it is obvious that if G(s) is
PR then its Nyquist diagram lies on the closed right
half G(s)-plane and converges to origin when
frequency goes to infinity, so the derivative of
arg G(jw) is non-positive at sufficiently high
frequencies. In the other words and as it is shown in
Fig.1 Only diagrams © and @ may belong to the set
of PR transfer functions with relative degree one. The
diagram @ shows the Nyquist diagram of an odd
transfer function, i.e., G(s)=-G(-s), which it’s all
poles and zeros are on the imaginary axis and thus is
not SPR. The diagram @ shows that the derivative of
arg G(jw) 1is non-positive at sufficiently high
frequencies.

Im{G(w)]

High Frequency Region

Re[G(jw)]

Fig. 1. Nyquist diagram of different G(s)’s with
relative degree one (n-m=1).

Also the arg{G(jw)} = —arg G(jw),
implies that when n—-m=-1, the derivative of
arg G(jw) is positive at sufficiently high frequencies.

Hence if G(s) is PR and |n - m| =1 then:

equality

(n—m)[i argG(ja))j <0, n—ml =1. 3)
dw
w—>

We know if G(s) is SPR then G(s—¢) is PR,
therefore if G(s) is SPR and |n—m|=1 then:

G(n- m)(% argG(jow - g)j <0,

@ —> 0

n—mlzl.

Now by substituting s = jo —¢ in (1) we have:

(Jo—&)" +b(jo—e)" .. +b,

G(jo—-¢)=k :
(Jo-&)"+aq(jo-&)""..+a,

=il . )

It is easy to see that

m —_
) 1| @ Imzl.
argG(jw — &)= ) tan —
gGjo-¢) ; [_E_Rezi

Therefore
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iarg G(jo—-¢)
dow

—g—Rezl.

i=1 (g+Rezl-)2 +(a)—Imzl.)2

(6)

—£—Repl

)

=1 (5+Repl)2 +(a)—Impl)2

If w tends to infinity we have:

—s-R
_d_arg G(Ja) g) Z(_glj
dw i=1 w

_Z[—a Repl] b - +(2n—m)g.

@

Multiplying both sides of (7) by (n-m) and noting to
|n - m' =1, we have:

(n- m)(i argG(jo - 5)) =
do

@ —> 0
(n—m)(hy —al)+(n—m)28 _ (n—my(by—a))+¢
w* w*
Therefore, the inequality (3) implies (n—m)
-b)2¢&>0, sothe proofis completed. O

Remark 1: If G(s) is PR and |n - m| =1, then the
inequality (n—m)(a; —b)=0 will be satisfied.

Remark 2: If G(s) is SPR and |n - m] =1, then (7)
and Lemma 4 show that ;Jd—arg G(jw) doesn’t

@
decay more rapidly than & as |eo] — oo.

Comment 3: The restriction which is introduced in
Remark 2 does not exist for the PR functions. This
restriction is an important difference between PR and
SPR functions related to high frequency behavior of
the Nyquist diagram of G(s). In the other words, the
third condition which is appeared in Statements 3 and
4 can be replaced by: if [n - m| =1, then a;£b;. It is

clear that —b; is equal to the summation of the zeros of
G(s) and —a; is equal to the summation of the poles of
G(s). Hence the new necessary condition which is
stated in Lemma 4 for G(s) with relative degree one,
can be interpreted as:

—b ={2Re[—pl]]—[ZRe[—zl.]J >0. (8)
=1 i=1

Comment 4: Suppose G(s) is in the form of (1) and
has the relative degree one, then
Re{b(jw)a(-jw)}

RSN = Gat—ro)

(o )0+ ®
™ + ...
ensures that
lim , _, @ Re[G(jw)] = k(a; —by).
Thus the condition:
If n—m=1 then lim w? Re[G(jw)]>0

®—>©

appeared in Statements 3 and 4 can be restated as:

-b)>0.

Since the second condition in Statements 3 and 4
ensures that k(g —b)20 for n—m=1, therefore -

this condition can be simplified as:

If n—m=1 then k(g

If n—m=1 then a #b,.

The following examples illustrate the use of the
proposed necessary condition.
Example 2: Let

G, ()= (s+4)s+6) ’
(s+2)(s+3)(s+5)
we have g —b=(2+3+5)—(4+6)=0, Thus according

to the proposed lemma (Lemma 4) and Remark 1,
G4(s) is not SPR but maybe PR. Fig. 2 shows that
Ga(s) is PR.

Example 3: Let

s +s+1

Gs (s)=

253 +2s2+3s+2,

Nyquist Diagram

Imaginary Axis
=

RE

0.1 .08 o] Q.08 0.1
Real Axis

Fig. 2. Gas): . . ,Gs(s):  , Gel(s):
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we have a) —b =(2/2)-(1)=0. Thus according to

Lemma 4 and Remark 1, Gs(s) is not SPR but maybe
PR. Fig. 2 shows that Gs(s) is not PR.
Example 4: Let

(2 +65+11)(s% +55+3)

G (S): )
O (67 435+ T)(35° +1852 + 55+ 9)

we have g —b=(3+18/3) - (6+5)=-2.
Thus according to Lemma 4 and Remark 1, Gy(s) is
not PR.
Fig. 2 shows that Gg(s) is not PR.
Theorem 1: G(s) is SPR, if and only if:
1) G(s) is analytic in Re[s] > 0,
2) n-m=21, and moreover
k>0,
3) Re[G(jw)]>0,Vo >0,
4) If the relative degree of G(s) is nonzero then the
summation of zeros of G(s) (—b) must not be

if n-m=1, then

equal to the summation of poles of G(s) (-q)i.e,
if |n—m| =1 then a, #b,.

Proof: An important result which follows from the
Maximum Modulus Principle can be stated as follows:
Suppose G(s) is a function of complex variable
s=0+ jo, now if it is analytic in a closed bounded
region I" and is not constant throughout the interior
of I', then Re[G(s)] has a minimum value in T
which occurs on the boundary of I" and never in the
interior of I" [30].

Now considering Lemma 1, the first condition
states that G(s) is analytic in Re[s] > 0, therefore the
minimum value of Re [G(s)] occurs on the boundary
s=—¢+ jo,VoeR which is stated in the third

condition of Lemma 1. If Re[G(jw)] =0 then there
is a finite frequency @ such that Re[G(jw,)] =0
and the above result of Maximum Modulus Principle
implies that Re[G(jw, —£)]<0,Ve>0 and thus the

inequality Re[G(j@)] >0 is necessary for Re
q Ty £—>0

+[G(jw-£)]20,Vw e R . The fourth condition can
be proved by considering the inequality Re[G
(jo-¢€)]20, Ve>0 at the

frequencies as discussed in the previous section. 0
Comment 5: It follows from circuit theory that for
any positive real function the inequalities % >0,

|n—m|£1 must be satisfied. Thus the theorem (1)

sufficiently large

can be restated as follows:
Theorem 2: The real rational transfer function

) _, s" 4 bs™ 4+ b,

1 >

©) ~ = k=0,
s+ as +...+ a,

G(s)=k b
a

is SPR, if and only if:
1) |n—m|<landk>0, and moreover if |n —m|=1
then o # b,
2) G(s) is analytic in Re[s]>0,
3) Re[G(jw)]>0,Yw=0.
Comment 6: If G(s) is PR, then it will be SPR if
the following extra conditions are satisfied:
) If ln—mlzl then a # b4,
2) G(s) has no pole or zero on the imaginary axis,
3) Re[G(jw)]#0,VweR.

6. CONCLUSION

In this paper, unlike the other works in strict
positive realness area which have focused on the state
space tools such as KYP Lemma, the necessary and
sufficient conditions for SPR functions are derived
directly from the basic definitions in the frequency
domain using complex analysis tools. The proposed
approach is established based on the Taylor expansion
and the Maximum Modulus Principle which are the
fundamental tools in the complex analysis. Using
Taylor expansion approach, the four common
statements in the strict positive realness area
investigated. A new necessary condition based on the
high frequency behavior of the transfer function is
extracted. Finally through a new theorem a more
simplified and completed conditions for strict positive
realness in frequency domain are presented.
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