Enrichment of Electrochemically Active Bacteria Using a Three-Electrode Electrochemical Cell

  • Yoon, Seok-Min (Department of Microbial Engineering, University of Konkuk) ;
  • Choi, Chang-Ho (Department of Microbial Engineering, University of Konkuk) ;
  • Kim, Mi-A (Department of Microbiology, Pusan National University) ;
  • Hyun, Moon-Sik (Korea BioSystems Co.) ;
  • Shin, Sung-Hye (Department of Microbial Engineering, University of Konkuk) ;
  • Yi, Dong-Heui (Department of Microbial Engineering, University of Konkuk) ;
  • Kim, Hyung-Joon (Department of Microbial Engineering, University of Konkuk)
  • Published : 2007.01.31

Abstract

Electrochemically active bacteria were successfully enriched in an electrochemical cell using a positively poised working electrode. The positively poised working electrode (+0.7 V vs. Ag/AgCl) was used as an electron acceptor for enrichment and growth of electrochemically active bacteria. When activated sludge and synthetic wastewater were fed to the electrochemical cell, a gradual increase in amperometric current was observed. After a period of time in which the amperometric current was stabilized (generally 8 days), linear correlations between the amperometric signals from the electrochemical cell and added BOD (biochemical oxygen demand) concentrations were established. Cyclic voltammetry of the enriched electrode also showed prominent electrochemical activity. When the enriched electrodes were examined with electron microscopy and confocal scanning laser microscopy, a biofilm on the enriched electrode surface and bacterium-like particles were observed. These experimental results indicate that the electrochemical system in this study is a useful tool for the enrichment of an electrochemically active bacterial consortium and could be used as a novel microbial biosensor.

Keywords

References

  1. Allen, R. M. and H. P. Bennetto. 1993. Microbial fuel cell. Appl. Biochem. Biotechnol. 39/40: 24-40
  2. Bakst, M. and B. Howarth Jr. 1975. SEM preparation and observations of the hen's oviduct. Anat. Rec. 181: 211-225 https://doi.org/10.1002/ar.1091810205
  3. Caccavo, F. Jr, D. J. Lonergan, D. R. Lovley, M. Davis, J. F. Stolz, and M. J. Mcinerney. 1994. Geobacter sulfurreducens sp. nov., a hydrogen- and acetate-oxidizing dissimilatory metal-reducing microorganism. Appl. Environ. Microbiol. 60: 3752-3759
  4. Chang, I. S., H. S. Moon, O. Bretschger, J. K. Jang, H. I. Park, K. H. Nealson, and B. H. Kim. 2006. Electrochemically active bacteria (EAB) and mediator-less microbial fuel cells. J. Microbiol. Biotechnol. 16: 163-177
  5. Chang, I. S., J. K. Jang, G. C. Gil, M. Kim, H. J. Kim, B. W. Cho, and B. H. Kim. 2004. Continuous determination of biochemical oxygen demand sensor using a microbial fuel cell type biosensor. Biosens. Bioelectron. 17: 607-613
  6. Choi, Y., J. Song, S. Jung, and S. Kim. 2001. Optimization of the performance of microbial fuel cells containing alkalophilic Bacillus sp. J. Microbiol. Biotechnol. 11: 863- 869
  7. Chaudhuri, S. K. and D. R. Lovley. 2003. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cell. Nat. Biotechnol. 21: 1229-1232 https://doi.org/10.1038/nbt867
  8. DiChristina, T. J. and E. F. DeLong. 1994. Isolation of anaerobic respiratory mutants of Shewanella putrefaciens and genetic analysis of mutants deficient in anaerobic growth on $Fe^{3+}$. J. Bacteriol. 176: 1468-1474 https://doi.org/10.1128/jb.176.5.1468-1474.1994
  9. Greene, A. C., B. K. C. Patel, and A. J. Sheehy. 1997. Deferribacter thermophilus gen. nov., sp. nov., a novel thermophilic manganese- and iron-reducing bacterium isolated from a petroleum reservoir. Int. J. Syst. Bacteriol. 47: 505- 509 https://doi.org/10.1099/00207713-47-2-505
  10. Green, C. D., A. R. Stone, R. H. Turner, and S. A. Clark. 1975. Preparation of nematodes for scanning electron microscopy. J. Microsc. 103: 89-99 https://doi.org/10.1111/j.1365-2818.1975.tb04540.x
  11. Ieropoulos, I., J. Greenman, C. Melhuish, and J. Hart. 2005. Energy accumulation and improved performance in microbial fuel cells. J. Power Sources 145: 253-256 https://doi.org/10.1016/j.jpowsour.2004.11.070
  12. James, L. and D. Andrew. 2000. Fuel Cell Systems Explained, pp. 63-81. 2nd Ed. John Wiley & Sons. Ltd, Chichester
  13. Kang, K. H., J. K. Jang, T. H. Pham, H. S. Moon, I. S. Chang, and B. H. Kim. 2003. A microbial fuel cell with improved cathode reaction as a low biochemical oxygen demand sensor. Biotechnol. Lett. 25: 1357-1361 https://doi.org/10.1023/A:1024984521699
  14. Kim, B. H., H. J. Kim, M. S. Hyun, and D. H. Park. 1999. Direct electrode reaction of Fe(III)-reducing bacterium, Shewanella putrefaciens. J. Microbiol. Biotechnol. 9: 127- 131
  15. Kim, B. H., H. S. Park, H. J. Kim, G. T. Kim, I. S. Chang, J. Lee, and N. T. Phung. 2004. Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell. Appl. Microbiol. Biotechnol. 63: 672- 681 https://doi.org/10.1007/s00253-003-1412-6
  16. Kim, B. H., I. S. Chang, G. C. Gil, H. S. Park, and H. J. Kim. 2003. Novel BOD (biochemical oxygen demand) sensor using a mediator-less microbial fuel cell. Biotechnol. Lett. 25: 541-545 https://doi.org/10.1023/A:1022891231369
  17. Kim, B. H., T. Ikeda, H. S. Park, H. J. Kim, M. S. Hyun, K. Kano, K. Takagi, and H. Tatsumi. 1999. Electrochemical activity of an Fe(III)-reducing bacterium, Shewanella putrefaciens IR-1, in the presence of alternative electron acceptors. Biotechnol. Tech. 13: 475-478 https://doi.org/10.1023/A:1008993029309
  18. Kim, G. T., G. Webster, J. W. T. Wimpenny, B. H. Kim, H. J. Kim, and A. J. Weightman. 2006. Bacterial community structure, compartmentalization and activity in a microbial fuel cell. J. Appl. Microbiol. [In press]
  19. Kim, H. J., H. S. Park, M. S. Hyun, I. S. Chang, M. Kim, and B. H. Kim. 2002. A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme Microb. Technol. 30: 145-152 https://doi.org/10.1016/S0141-0229(01)00478-1
  20. Kim, H. J., M. S. Hyun, I. S. Chang, and B. H. Kim. 1999. A microbial fuel cell type lactate biosensor using a metalreducing bacterium, Shewanella putrefaciens. J. Microbiol. Biotechnol. 9: 365-367
  21. Kim, M., S. M. Youn, S. H. Shin, J. G. Jang, S. H. Han, M. S. Hyun, G. M. Gadd, and H. J. Kim. 2003. Practical field application of a novel BOD monitoring system. J. Environ. Monit. 5: 640-643 https://doi.org/10.1039/b304583h
  22. Lovely, D. R. 1991. Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol. Rev. 55: 259-287
  23. Lovley, D. R., S. J. Giovannoni, D. C. White, J. E. Champine, E. J. Phillips, Y. A. Gorby, and S. Goodwin. 1993. Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Arch. Microbiol. 159: 336-344 https://doi.org/10.1007/BF00290916
  24. Moon, H., I. S. Chang, J. K. Jang, K. S. Kim, J. Lee, R. W. Lovitt, and B. H. Kim. 2005. On-line monitoring of low biochemical oxygen demand through continuous operation of a mediator-less microbial fuel cell. J. Microbiol. Biotechnol. 15: 192-196
  25. Myers, C. R. and J. M. Myers. 1992. Localization of cytochromes to the outer membranes of anaerobically grown Shewanella putrefaciens MR-1. J. Bacteriol. 174: 3429- 3438 https://doi.org/10.1128/jb.174.11.3429-3438.1992
  26. Nealson, K. H. and D. Saffarini. 1994. Iron and manganese in anaerobic respiration: Environmental significance, physiology, and regulation. Annu. Rev. Microbiol. 48: 311-343 https://doi.org/10.1146/annurev.mi.48.100194.001523
  27. Park, H. S., B. H. Kim, H. S. Kim, H. J. Kim, G. T. Kim, M. Kim, I. S. Chang, Y. K. Park, and H. I. Chang. 2001. A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell. Anaerobe 7: 297-306 https://doi.org/10.1006/anae.2001.0399
  28. Seeliger, S., R. Cord-Ruwisch, and B. Schink. 1998. A periplasmic and extracellular c-type cytochromes of Geobacter sulfurreducens acts as a ferric iron reductase and as an electron carrier to other acceptors or to partner bacteria. J. Bacteriol. 180: 3686-3691
  29. Wilen, B. M., J. L. Nielsen, K. Keiding, and P. H. Nielsen. 2000. Influence of microbial activity on the stability of activated sludge flocs. Colloids Surf. B Biointerfaces 18: 145-156 https://doi.org/10.1016/S0927-7765(99)00138-1