DOI QR코드

DOI QR Code

Dependence of Low-frequency Noise and Device Characteristics on Initial Oxidation Method of Plasma-nitride Oxide for Nano-scale CMOSFET

Nano-CMOSFET를 위한 플라즈마-질화막의 초기 산화막 성장방법에 따른 소자 특성과 저주파 잡음 특성 분석

  • Published : 2007.01.01

Abstract

In this paper, two kinds of initial oxidation methods i.e., SLTO(Slow Low Temperature Oxidation: $700^{\circ}C$) and RTO(Rapid Thermal Oxidation: $850^{\circ}C$) are applied prior to the plasma nitridation for ultra thin oxide of RPNO (Remote Plasma Nitrided Oxide). It is observed that SLTO has superior characteristics to RTO such as lower SS(Sub-threshold Slope) and improved Ion-Ioff characteristics. Low frequency noise characteristics of SLTO also showed better than RTO both in linear and saturation regime. It is shown that flicker noise is dominated by carrier number fluctuation in the channel region. Therefore, SLTO is promising for nano-scale CMOS technology with ultra thin gate oxide.

Keywords

References

  1. J. Jomaah and F. Balestra, 'Low-frequency noise advanced CMOS/SOI devices', IEE Pro-Circuits Devices Syst., Vol. 151, No.2, p. 111, 2004 https://doi.org/10.1049/ip-cds:20040109
  2. M. B. Weisman, '1/f noise and other slow, non exponential kinetics m condensed matter', Rev. Mod. Phys., Vol. 60, No.2, p. 537, 1988 https://doi.org/10.1103/RevModPhys.60.537
  3. Y. Nemirovsky, I. Brouk, and C. G. Jakobson, '1/f noise in CMOS transistors for analog Applications', IEEE Trans. Electron Devices, Vol. 48, No.5, p. 921, 2001 https://doi.org/10.1109/16.918240
  4. M. H. Tsai and T. P. Ma, 'The impact of device scaling on the current fluctuations in MOSFET's', IEEE Trans. Electron Devices, Vol. 41, No. 11, p. 2061, 1994 https://doi.org/10.1109/16.333823
  5. K. Hung, P. K. Ko, C. C. Hu, and Y. C. Cheng, 'A unified model for the flicker noise in metal-oxide-semiconductor fieldeffect transistors', IEEE Trans. Electron Devices, Vol. 37, No.3, p. 654, 1990 https://doi.org/10.1109/16.47770
  6. Z. Celik-Butler, 'Low-frequency noise in deep-subrnicron meal-oxide-semiconductor field-effect transistors', IEE Proc-Circuits Devices Syst., Vol. 149, No.1, p. 23, 2002
  7. T. Sasaki, K. Kuwazawa, K. Tanaka, J. Kato, and D. L. Kwong 'Engineering of nitrogen profile in an ultrathin gate insulator to improve transistor performance and NBTI', IEEE Electron Device Letters, Vol. 24, No.3, p. 150, 2003 https://doi.org/10.1109/LED.2003.809051
  8. E. P. Gusev, H.-C. Lu, E. L. Gafunkel, T. Gustafsson, and M. L Green, 'Growth and characterization of ultrathin nitirded silicon oxide films', IBM J. DEVELOP, Vol. 43, No. 3, p. 265, 1999 https://doi.org/10.1147/rd.433.0265
  9. G. Ghibaudo, O. Roux, C. N. Due, F. Balestra, and J. Brini, 'Improved analysis of low frequency noise in field-effect MOS transistors', Phys. Status Solidi, Vol. 124, No.2, p. 571, 1991 https://doi.org/10.1002/pssa.2211240225
  10. K. W. Chew, K. S. Yeo., and S.-F. Chu., 'Impact of technology scaling on the 1/f noise of thin and thick gate oxide deep subrnicron NMOS transistors', IEE Proc. Circuits Devices Syst., Vol. 151, No.5, p. 415, 2004
  11. C. Jakobson, I. Bloom, and Y. Nernirovsky, '1/f noise in CMOS transistors for analog applications from subthreshold to saturation', Solid-State Electronics., Vol. 42, No. 10, p. 1807, 1998 https://doi.org/10.1016/S0038-1101(98)00162-2